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Introduction 

The basic idea of cross-validation procedures is to divide a data set into a reference and a 

validation set, to omit any kind of information of the validation set and to predict this 

information, e.g. phenotypes, with a model trained exclusively in the reference set. The 

accuracy of prediction can be used to evaluate the underlying model and to compare 

alternative models. In the field of genomic selection, cross-validation can be used for 

assessing the accuracy of genomic breeding values (GEBVs) predicted with a specific model 

(e.g. Blonk et al., 2010; Luan et al., 2009) and for comparing the quality of different 

approaches used for estimation of GEBVs (Lund et al., 2009; Goddard and Hayes, 2007). 

However, the way of subdividing the data set is known to influence the results obtained by 

cross-validation (Luan et al., 2009; Lee et al., 2008). Therefore, we studied the changes in 

results when using different numbers of animals for the reference and the validation set and 

tried to find optimal subdivision strategies for the different objectives of cross-validation. 

Material and Methods 

Data. We used a sample of 2,294 Holstein bulls, which were genotyped with the Illumina 

50K SNP chip. SNPs with a minor allele frequency lower than 5%, with missing position or 

a call rate lower than 95% were excluded. After filtering, there were 39,557 SNPs remaining 

for further analyses. Missing genotypes at these SNP positions were imputed using 

fastPHASE (Scheet and Stephens, 2006). All bulls had pedigree information and breeding 

values for somatic cell score with an accuracy > 0.87, which were used as quasi-phenotypes 

for the following analyses.  

 

Methods to predict the GEBVs. We used two best linear unbiased prediction (BLUP) 

models for the estimation and prediction of the GEBVs. The first model included a random 

genomic and a random polygenic effect (Model A), while the second one included a random 

genomic component only (Model B). For model A, we fitted 

eWgZuy +++= µ  

where y is a vector of the phenotypes (breeding values for somatic cell score) for all bulls in 

the reference set, µ  is the overall mean, Z is the incidence matrix for the random polygenic 

effect, u is a vector containing a random polygenic effect for each individual, W is the 

incidence matrix for the random genomic effect, g is a vector containing a random genomic 

effect for each animal and e is a vector of random residual terms. u is assumed to follow 
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uN σA  where A is the pedigree based relationship matrix. g is distributed 
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gNg σG where G is a marker based relationship matrix, which was built according to 

VanRaden (2008) based on all available SNPs (n=39,557). In model A, the total breeding 

value was the sum of the polygenic and the genomic breeding value. 

In model B, the polygenic component was omitted, hence the model was  

eWgy ++= µ . 

Here, information of only one eighth of all available SNPs (n=4,945) was used to build G. 

The prediction accuracy of model A is expected to exceed the one of model B. As can be 

seen in the model design, we did not estimate an effect for each single SNP, but used the 

genomic relationship matrix to model a genomic effect for each individual. It was thus 

possible to estimate variance components in each step in each replicate by using ASReml 

(Gilmour et al., 2009). With the corresponding variance components, effects were estimated 

and GEBVs for the bulls in the validation set were predicted. 

 

Cross-validation procedure. The whole data set was divided into a reference and a 

validation set. Phenotypes of the animals in the validation set were assumed to be unknown.  

First, a random sample of 100 animals was drawn for the validation set while the remaining 

2,194 bulls built the reference set. In the next step, the size of the validation set was 

increased by 100 by moving 100 randomly chosen individuals from the reference to the 

validation set. This was done stepwise until 1,500 bulls were in the validation set. For each 

step, GEBVs were predicted for the bulls in the validation set with the information from the 

animals in the reference set. The whole procedure was repeated 60 times.  

  

Criteria for comparison. Pearson’s correlation coefficient between the realized and the 

predicted phenotypes for the animals in the validation set was calculated for each step in 

each replicate. In case the model did not converge during the process of variance component 

estimation, the correlation for this step in the particular replicate was considered to be NA.  

The correlation between realized and predicted phenotypes was also used for testing whether 

the models differed significantly from each other. Therefore, the correlation coefficients 

were transformed so that they follow approximately a normal distribution and the difference 

between the correlation coefficient was tested against being zero (Sachs and Hedderich, 

2009). The test of significantly different correlations was applied in each step in each 

replicate and the obtained p-values were averaged over the replicates.  

Results and discussion 

Figure 1 shows a Box-Whisker-Plot of the correlations between realized and predicted 

phenotypes for the animals in the validation set. As expected, Model A was found to be more 

accurate than Model B. With both methods, the highest correlations could be found when the 

number of animals in the validation set (nv) was small. With nv=100, the median of the 

correlations obtained was 0.689 and 0.627 with Model A and B, respectively. The median 

was almost constant with nv ranging between 100 and 600 and then decreased continuously 

with both methods. The median of the correlation was 0.577 and 0.536 for nv=1500 with 

Models A and B, respectively. Due to the design of cross-validation the smaller the 

validation set, the larger is the reference set. A larger reference set will lead to a more 

accurate estimation of the variance components and thus to a better estimation of the effects. 



Therefore, also a better prediction of the phenotypes for the animals in the validation set is 

possible and higher correlations are expected with small validation sets.  

 

Figure 1: Box-Whisker-Plot of the correlations between realized and predicted 

phenotypes for the animals in the validation set.  

 

 
Figure 2: -log(p)-values (averaged over the replicates) of the test for a difference in 

correlation coefficients of Models A and B. The dashed line symbolizes the significance 

threshold on a 5% error level. 



However, variation over the replicates was also highest in the case of very small validation 

sets. For example, with nv=100, the results varied between 0.545 and 0.794 with Model A 

and ranged from 0.509 to 0.786 with Model B. Lee et al. (2008) described similar tendencies 

concerning the accuracy and the variation of prediction of phenotypes.  

Since a higher number of values can be used for calculating the correlation coefficient when 

the number of animals in the validation set is higher, the correlation coefficient is estimated 

better with larger values of nv. Therefore, even if the absolute distance between the models 

regarding the correlation coefficients seems to be similar with all sizes of the validation set, a 

significance differentiation between Models A and B was only possible with nv ranging 

between 700 and 1,300 (Figure 2). 

Conclusion 

The optimal subdivision of a data set depends on the objective of cross-validation. The 

highest correlations can be obtained with the size of the reference set being large and 

therefore the validation set being small. A small validation set, however, also leads to a high 

variation in the obtained correlations and results depend strongly on the sample chosen for 

the validation set. A five-fold subdivision, using 20 per cent of the data as validation set, 

seems to be a good compromise. Larger validation sets provide more accurate estimation of 

correlation coefficients. Hence, if the aim is to differentiate significantly between two 

models, larger validation sets are recommended. 
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