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1 Introduction

The LHC will bring the new physics of this millennium. But still, the discoveries which
will be done at the LHC need further investigations, which need to be carried out by
a linear collider. This linear collider is an international project (ILC), where the col-
laboration partners are spread out all around the world. A huge effort is carried out to
realize a machine, powerful enough to reach the high energy electrons in a most effective
way. To reach these energies, thousands of accelerating structures, so called cavities, are
needed and controlled. Several cavities are grouped in an accelerator module which is
driven by a single klystron. The beam will be accelerated over a lenght of ≈ 22 km. This
means, that LLRF (low level radio frequency - the system which controlls an accelerator)
needs to ensure beam quality, such as density, energy- and momentum spread, emittance
and more for a huge distance at a high power level and for multiple modules with an
internal structure. The cavities used for the ILC will be standing wave cavities, which
means that the electric field will need to remain constant over the time the beam travels
through the cavity. This is a different concept if you compare this to traveling wave
cavities (TW-cavities). In TW-cavities, the whole field energy, represented by a wave
traveling along the cavity, is absorbed by the pulse which will be accelerated. This is an
effective way to accelerate pulses in case the pulses are short compared to the field decay
time. If the pulse becomes longer, the intra pulse energy deviation will become bigger
since the accelerating field will decay over time. To reach long pulses with small energy
deviation, standing wave cavities are needed. Unfortunately, due to heating by ohmic
losses, a constant high gradient applied to the metallic surface leads to high thermal
dissipation into the walls which need to be compensated by expensive cryogenics. To
avoid these high losses, superconductivity offers a huge possibility to reach these high
gradients with a lower invest in cryogenics. Besides this, superconducting cavities are
shorter than comparable normal conducting ones, which causes less disruptive effects
onto the beam and allows a shorter hence a cheaper linac. Furthermore, the special ge-
ometry possible with superconducting cavities allows for larger beam holes. This enables
smaller emittance - respectively higher luminosity. The arguments pointed out above
are the reason why such a huge effort is done to realize superconducting standing wave
cavities.

1



1 Introduction

The former TESLA Test Facility (TTF) at DESY is a facility to test such cavities and
proof the feasibility of a linear accelerator reaching an energy of 500 GeV. In between,
TTF is known as FLASH, the Free Electron Laser at Hamburg. After TTF made huge
steps towards a superconducting linear collider, FLASH still contributes to the ILC de-
veloping process with some unique possibilities. A schematic overview of FLASH is given
in Fig.1.1. FLASH is a facility providing ultra short electron bunches to generate laser

Figure 1.1: Sketch of FLASH before Shutdown October ’09, [17]. The Number inside
the accelerating modules denotes the DESY internal production descrip-
tion.

light with a wavelength of a few nanometers. The SASE (Self Amplified Spontaneous
Emission ) principle, which was proven at FLASH, used to generated the intense laser
light, is briefly explained in Fig.1.2. The accelerator of a free electron laser (FEL) is
the most important part since it needs to deliver an intense high energy electron beam
to the magnets with small bunch structure deviations. The relation between the FEL
wavelength and the beam energy is λL ∝ 1

γ2 where γ is the relativistic boost factor
depending on the energy of the particle. This is the common point between FLASH and
ILC: Reaching stable high energy electron pulses with small emittance. The following
chapter deals with the theory and basics of superconductivity and its microscopic ex-
planation, the BCS theory, and the basics of cavity theory. In chapter 3, an overview
of control theory is shown, together with digital signal processing and its relations to
cavities. Also a method is shown, [4] [5], to prevent cavities to quench under working
conditions in presence or absence of beam while reaching the maximum accelerating
gradient.
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Figure 1.2: (1) The electron bunch enters the undulator and starts with spontaneous
emission. (2) The emitted radiation reacts back onto the bunch and leads
to a density modulation. The bunch gets ’sliced’ where the intra-bunch
distance of each slice is about the wavelength of the amplified radiation.
This results in coherent emission (3). The effect saturates after a certain
undulator distance and the electron beam is transported to the beam dump
[43].

The derived principles from chapter 3 are implemented at FLASH and the results
are shown in chapter 4 which will explain in detail the feedback system developed and
tested at accelerator module 1 (ACC1, No 2∗ in Fig. 1.1). Chapter 5 describes the work
done at the vertical test stand. Furthermore, a description of the hardware and software
which has been developed to realize the digital controlled test stand and the results and
possible upgrades are presented. In general, the vertical test stand is used to test the
cavity to its maximum reachable gradient and to guarantee that a cavity will keep this
gradient along its treatment chain at DESY.
Another topic of this work is the so called 9 mA Run, which was performed at FLASH
in September ’09. This accelerator study aimed at learning as much as possible from
a superconducting electron linac with accelerator technology, similar to the technology
which will be used at the ILC. Since the ILC technology is not fixed yet, R&D is still
important and can lead to many improvements. The general goals of this run are de-
scribed together with the results. An analysis of the quench prevention, explained in
chapter 3, is also contained along with the results of the implementation of the real time
quench detection. The main issue of this thesis is to take a look into the high acceler-
ating gradients stability in an accelerator and also to realize such high gradient cavities
during production series.
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2 Theory of superconductivity and cavities

2.1 Superconductivity

2.1.1 BCS theory

Superconductivity has been discovered in 1913 and describes a state below a critical
Temperature Tc where the electric DC resistance of a material vanishes. This effect
was characterized by Ginsburg and Landau in a thermodynamical theory but could not
explain the microscopic mechanism, the zero resistance and the values of the critical
parameters. Bardeen, Cooper and Schrieffler suggested a theory in 1957, named after
their initials (BCS-Theory), which explained superconductivity as an effect, based on
an attractive force between two electrons in a crystal lattice via virtual phonons, the
discrete states of the lattice vibration (see Fig. 2.1). This simple picture implies that a

Figure 2.1: Because of phonon interactions between electrons and the atomic lattice,
electrons can create stable bound systems and act like bosons [1].

single electron travels along the atomic lattice and polarizes the lattice and an attraction
onto a second electron is implied due to this polarization. This attraction is maximized,
when the second electron travels along the path of the first electron, but with opposite
momentum. At low temperatures, this attraction is strong enough to create bounded
states of two electrons (Cooper-pair).
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2.1 Superconductivity

Such a Cooper-pair can be described via quantum mechanics as an antisymmetric
spin- and symmetric space-wave function{

~k ↑,−~k ↓
}

This also means that such a pair of electrons can be considered as a boson and all
cooper-pairs in the lattice act as a superconducting fluid. The bound state of electrons is
energetically favorable below the critical temperature since the two ’condensed electrons’
will have a lower energy than two normal electrons would have.

E2e− = 2EF

EBCS = 2EF −∆

with EF is the Fermi-energy and ∆ is the condensation energy or ’gap’ in the range
of 10−5 eV. The gap itself is temperature-dependent and can be calculated within the
BCS-theory to

∆ = 1.76 kBTc

If the temperature, the current through the lattice or an external magnetic field, raises to
a certain level, the Cooper-pairs will break up and the superconducting state is lost. In
Fig. 2.2 a diagram of the phase-space is shown. Inside the surface the superconducting
state is given. If too much energy is applied to the lattice, the Cooper-pairs will break

Figure 2.2: Phase space with three parameters: the current density j, the external
magnetic field H and the temperature of the system T [1].

up and the material will go into normal conducting state.
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2 Theory of superconductivity and cavities

These critical parameters are only strictly valid for the so called type I superconduc-
tors. For type II superconductors, it is energetically favorable to allow certain magnetic
vortices to penetrate the material above the lower critical field. The number of these vor-
tices will raise with the magnetic field until the second critical magnetic field is reached
and the whole material will get normal conducting (Fig. 2.3).
The critical magnetic field of a type I superconductor is given by the relation

Figure 2.3: Phase diagrams for type I (left) and type II (right) superconductor.

Bc (T ) = Bc (0)

[
1−

(
T

Tc

)2
]
. (2.1)

Another important feature of superconductors is the Meissner-Ochsenfeld effect. If a
superconductor is cooled below its transition temperature in presence of a magnetic
field, the magnetic flux will be expelled immediately from the volume and a perfect
shielding of the inside will appear. This means, that the inside of the volume will be free
of any magnetic field. The perfect shielding can be explained in terms of classic physics
but not the expulsion of the field. This effect was the evidence, that superconductivity
is a seperate thermodynamic phase which has to be described with quantum mechanics.
The perfect shielding is generated by a small current, which flows in a thin surface layer.
Only this small current will dissipate and create Ohms heating. This is a big advantage
of superconducting cavities, since only a small amount of heat has to be cooled, which
is an important issue for the cryogenics. To calculate the thickness of the layer, the
two-fluid model from London is used.
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2.1 Superconductivity

The so called London penetration depth is given by the characteristic length of the
exponential decay of the magnetic field into the superconductors skin

B (x) = B (0) e−
x
λL (2.2)

λL =
√

me

nSe2µ0
. (2.3)

Here λL is the penetration depth. With the typical penetration depth for Niobium, a
current is flowing within a layer of a thickness of around 30 - 40 nm. Another important
parameter, the coherence length ξGL, describes the distance over which the electrons are
correlated. The value can be derived using the Ginsburg-Landau-Theory to

ξGL =
~vF
∆

(2.4)

where vF is the velocity of the electrons near the Fermi energy. For Niobium, this value
is around 39 nm. Interpreting this length as the size of a Cooper pair, it is obvious that
this distance is bigger than the lattice constant a ≈ 0.4 nm and that the Cooper-pairs
overlap due to a high electron density per unit cell. This overlap is the reason why all
Cooper-pairs act as a uniform fluid. The density of the Cooper-pairs decreases with the
depth of the layer due to an energy deposition of the magnetic field at the surface which
causes the Cooper-Pairs to break up. In Fig.2.4, this case is depicted. When applying

Figure 2.4: In superconducting materials, external magnetic fields can intrude into the
material, but only in a thin layer [24].

an external, time independent electromagnetic field, no DC resistance of the flowing
super-current arises and no power dissipation occurs. Working with high RF fields, this
statement is no longer true.
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2 Theory of superconductivity and cavities

Cooper-pairs can flow without resistance through the lattice but they still have masses
and the inertia has to be taken into account when the electrons are accelerated into
different directions within an oscillation period. The formula, describing the surface
resistance is

Rsurf = RBCS +R0 = 2 · 10−4 1
T

(
f

1.5

)2

exp
(
−17.67

T

)
+R0

with R0 as the temperature residual resistance with typical values of 10 − 20 nΩ. This
residual resistance depends on impurities, surface layers of oxides and other foreign ma-
terial inclusions. Therefore, cleanness during preparation is crucial. This microwave
resistance implies, that a critical surface electric field exists, above the current through
this layer reaches the critical current density and the Niobium becomes normal conduct-
ing. Hence, the surface resistance limits the accelerating gradient to a certain level with
respect to the given geometry of the cavity. But the more crucial limitation is the so
called quench, which arises when increasing the external magnetic field.

2.1.2 Ways to loose the superconductivity (quench and field emission)

As shown in the previous section, impurities influence the residual resistance of the cavity
in the surface skin, because the penetration depth depends on the mean free path of the
electrons ` in the material. The dependence of ξ on the mean free path is given by

1
ξ

=
1
ξGL

+
1
`
. (2.5)

The introduction of the effective penetration depth

λeff = λL ·
ξo
ξ

(2.6)

reflects that the penetration depth increases with a reduction of the mean free path.
For an ideal superconductor (`→∞) one has ξ = ξGL. In the limit of very impure
superconductors, we have ` << ξGL and the relation becomes

ξ = ` .

The mean free path of electrons in Niobium is strongly influenced by impurities like
Oxygen, Nitrogen, Carbon or metals like Titanium or Iron. While the amount of metals
can be reduced by purification, other elements play an important role due to surface
treatments with acids, like hydrogen residua.
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2.1 Superconductivity

Figure 2.5: Example of different mechanisms in a cavity which can cause the loss of
superconductivity [22].
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2 Theory of superconductivity and cavities

These impurities become relevant when discussing the quality factor of a cavity and its
dependence on the accelerating field. Besides the problems due to impurities below and
on the surface several other mechanisms exist which show up when applying an external
electromagnetic field. They are sketched in Fig.2.5. Two main problems nowadays will
be discussed in more detail. The field distribution is shown in Fig.2.6. The magnetic
field has its peak value at the equator area, while the peak electric field is at the iris. The

Figure 2.6: Left: electric field strength inside a TESLA cavity, Right: magnetic field
strength inside a cavity. High fields are marked with red [25].

critical magnetic field of Niobium is 230 mT at 1.8 K and 180 mT at 2 K (see equation
2.1). Above this value, the cavity will loose its superconducting state or the cavity
will quench. But even at lower magnetic fields, a cavity can quench. This problem
arises due to extended effects, e.g. foreign material inclusions, which has a lower critical
temperature or is not superconducting at all or geometry effects. The mechanism is
shown in Fig. 2.7. If the dissipated power into this defect is high enough, the surrounding
region can heat up and causes the quench. The area of the normal conducting state will
grow exponential, since a bigger area implies a bigger dissipation.

Figure 2.7: Principal mechanism of a quench [13].
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2.1 Superconductivity

Beneath quenching, the so called field emissions puts another barrier before reaching a
high field in the cavity. Basically, field emissions are described by the Fowler-Nordheim-
Theory (Fig. 2.8). They discussed the emission of electrons from a surface A by applying
an external electric field E. The current is then calculated to

IFN = A · C · E
2

Φ
exp

(
−BΦ

3
2

E

)
(2.7)

where B and C are constants and Φ is the working function of the metal. When applying
this formula to Niobium, assuming a current of 1 µA, an electric field of 3 GV/m will
result in field emission. Obviously, this field would be too high to produce field emission
in a cavity, since we can reach accelerating fields up to 40 MV/m. But taking into
account, that this formula describes perfect flat surfaces, we see where the problem
arises. Scratches, pits and bumps on the surface and impurities with different working
functions can lead to field emissions (Fig. 2.9) [44].

Figure 2.8: The mechanism of the Fowler-Nordheim-Emission. Left: the metal surface
in vacuum without an external electric field. The potential Barrier has
infinite thickness and no electron will tunnel into the vacuum. Right: an
external electric field is applied, which decrease the potential barrier and
electrons can leave the metal surface [13].

If we want to identify the spot where the quench arises and take a closer look at the
defect, a so called ’Temperature Map’ or just T-Map is applied. By assembling thermal
dependent resistors to the outer surface of the cavity and running a test, the resistance
of the sensors are measured and will change if the area below the resistors heats up. This
resistor change is mapped onto the cavity surface and defects can be localized within
given tolerances (Fig.2.10).
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2 Theory of superconductivity and cavities

Figure 2.9: Some examples of the inner cavity surface which will lead to a quench or
field emission [23].

Figure 2.10: Example of Temperature Mapping of a superconducting cavity with an
impurity on its surface. This impurity leads to a local quench [13].
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2.2 Toy model - the pillbox cavity

2.2 Toy model - the pillbox cavity

To illustrate the basic concepts and important quantities of a cavity, such as the acceler-
ating field, shunt impedance and quality factor, an idealized cavity, the so called pillbox
cavity will be used. This is just a toy model since the geometry tends to exhibit strong
field emission and no beam pipe is attached but it allows an analytical description of the
cavity. With regard to a conducting surface in a vacuum and an external electromagnetic
field, the boundary conditions are

~E⊥~n ∧ ~H‖~n (2.8)

and can be written as
~E · ~n = 0 ∧ ~H × ~n = 0. (2.9)

The field, excited by an rf source in an infinite waveguide with uniform cross-section and
a perfect conducting surface is

~E(~x, t) = ~E(ρ, φ)eikz−iωt (2.10)
~H(~x, t) = ~H(ρ, φ)eikz−iωt (2.11)

where ω is the angular frequency and k is the wave number.ρ and φ are the radius and
angle in cylindrical coordinates. Using Maxwell’s equations to derive the wave equation(

∇2 − 1
c2

∂2

∂t2

){
~E
~H

}
= 0 (2.12)

and putting (2.8) and (2.9) into (2.12)[(
∇2 − ∂2

∂z2

)
+
(
ω2

c2
− k2

)]{
~E
~H

}
= 0 (2.13)

⇔
[
∇2
⊥ +

(
ω2

c2
− k2

)]{
~E
~H

}
= 0 (2.14)

The boundary conditions (2.8) and (2.9) can be rewritten to

Ez|S = 0 ∧ ∂Hz

∂n

∣∣∣∣
S

= 0. (2.15)

The independence of Ez and Hz and the different boundary conditions imply that the
solutions (2.14) form two sets of modes with different eigenvalues.
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2 Theory of superconductivity and cavities

The names used for these families of modes are TM and TE, where TM means E‖z
and H⊥z and the other way around for TE. By adding conducting surfaces at the knots
of the wave, the pattern of the field is not changed. Since the knots can be chosen
arbitrary, surfaces can be placed at z = 0 and z = d. Due to reflections at the surfaces,
standing waves are created as a combination of forward and backward traveling waves

Ez(~x, t) = Ψ(ρ, φ) cos
(pπz
d

)
eiωt p ∈ N, TM-Mode (2.16)

Hz(~x, t) = Ψ(ρ, φ) sin
(pπz
d

)
eiωt p ∈ N, TE-Mode (2.17)

(2.18)

With k = pπ
d and substituting these expressions into (2.14) we obtain the fields Ψ(ρ, φ)

which are the solutions to the eigenvalue equations(
∇2
⊥ + γ2

j

)
Ψ(ρ, φ) = 0 (2.19)

γ2
j =

(
ωj

c

)2

−
(pπ
d

)2
(2.20)

where γj is the j-th eigenvalue. An interesting relation is found, when scaling the electric
and magnetic field with the same constant a. The fields will be the same in the cavity,
but it can be shown that the relation ωj ∝ 1

a is true. This means, that the mode
spectrum is inversely proportional to the cavity size.
Consider a cylindrical conductor of length d and radius R (Fig. 2.11).

Figure 2.11: a) shows the geometry of a pillbox cavity. b) depicts the J0 and J1 Bessel
function which describes the radial electric field or the radial magnetic
field of the cavity, respectively.
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2.2 Toy model - the pillbox cavity

In this case, Ψ is derived as solution of (2.19) applied to this geometry and the eigen-
values are the Bessel-functions. Investigate the case of the lowest frequency, the field
distribution is given by

Ez = E0J0

(
2.405ρ
R

)
eiωt (2.21)

Hφ = −iE0

η
J1

(
2.405ρ
R

)
eiωt (2.22)

with η =
√
µ0/ε0. A plot of the distribution is shown in Fig. 2.12. The resonance

frequency is given by

ω =
2.405c
R

.

This corresponds to the lowest frequency of the pillbox cavity.

Figure 2.12: This picture shows the electric (a) and magnetic (b) field distribution
inside a pillbox cavity of the lowest Eigenmode, the so called TM010

mode.
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2 Theory of superconductivity and cavities

The complete set of TM modes has an own nomenclature which is used for every
cavity. The classification is TMmnp. The integers m,n,p describe the number of sign
changes the electric field will have, when going in the direction of φ, ρ and z. There
exists a large number of higher order modes (HOM) since any combination of m,n and p
is possible. For the whole set of equations, more details are given in [13]. The TM-modes
with the notation TM1np are so called dipole modes (Fig. 2.13 (a) and (c)) which are
unwanted in accelerators, because they have a deflecting field along the z-axis which will
disrupt the beam. In order to accelerate the beam, a non-vanishing electric field along
the z-axis, which is only given by the J0 Bessel function, is needed. These modes are
called monopole modes and the notation is TM0np. Usually, the TM010 is chosen, since
it has the lowest eigenfrequency. The TE modes do not have a longitudinal electric field
and thus ca not accelerate the beam nor can they be excited by the beam.1 Some other
modes are shown in Fig. 2.13. By now, the electric field along the z-axis was calculated.
But we want to know the accelerating voltage, e.g. the energy the particle gains while
traveling through the cavity. First, we assume that the particle travels close to the speed
of light. This is given e.g. for an electron with an energy greater than 10 MeV. It enters
the accelerating cavity on z-axis at time t=0 and leaves it at t=d/c=Tcav. During this
transit, the electron is exposed to a time varying field. The time the electron need to
travel through the cavity needs to be the half of an rf period so the electron receives the
maximum energy gain from the cavity:

Tcav =
d

c
=

π

ω0
.

Here ω0 is the frequency of the accelerating mode. If the phase of the electric field and
the arrival time of the electron is synchronized in the right way, the electron enters the
cavity just when the field changes sign. This implies that the electron will see a field
pointing in only one direction. The accelerating voltage is then defined by

Vc =
∣∣∣∣∫ d

0
Eeldz

∣∣∣∣ (2.23)

with
Eel = Ez(ρ = 0, z)eiω0z/c+iϕ.

When ϕ is an arbitrary phase, (2.23) can be written as

Vc =
∣∣∣∣∫ 0

d
Ez(ρ = 0, z)eiω0z/c+iϕdz

∣∣∣∣ (2.24)

1This is only true as long no beam pipes are attached to a cavity.
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2.2 Toy model - the pillbox cavity

Figure 2.13: Different modes have different field contributions, like a deflecting electric
or magnetic field along the axis (left: electric field / right: magnetic field).
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2 Theory of superconductivity and cavities

If we consider the pillbox cavity in the TM010 mode, we put (2.21) into (2.24) and find

Vc = E0

∣∣∣∣∫ 0

d
eiω0z/cdz

∣∣∣∣ = d · E0

sin
(
ω0d
2c

)
ω0d
2c

= d · E0 · T (2.25)

The parameter T is known as the transit factor and can be understood as a measure
for the effective voltage a particle will see, since it will not see a constant voltage but
a time dependent field. This simplified expression for the transit factor only works for
the pillbox cavity with the Tcav relation from above. The accelerating gradient Eacc is
defined as

Eacc =
Vc
d

which evaluates to Eacc = 2E0/π in case of the TM010 pillbox cavity. In section 2.1.1,
we derived an expression for the AC resistance depending on the temperature and the
frequency. At working temperatures of the TESLA cavities, it is in the order of several
tens of nano-ohms if we are dealing with well prepared Niobium surfaces. This leads to
a small deposition of energy in a thin layer due to Joule heating.

dPc
ds

=
1
2
Rs

∣∣∣ ~H∣∣∣2 (2.26)

with dPc/ds as the dissipated power per area and ~H is the local magnetic field. The
modifications of the local magnetic field through the current flowing in the thin layer can
be neglected. An important quantity, discussing the cavity types/designs and material
is the so called (unloaded) quality factor Q0 which is defined as

Q0 =
ωU

Pc
(2.27)

where U is the energy stored in the cavity and Pc is the dissipated power into the cavity
walls per cycle. It can be interpreted as a number of oscillations the field will do with a
given amount of energy since we can decipher the equation as

Q0 = ω
Energy stored in the cavity

dissipation per one oscillation
(2.28)

The total stored energy in a cavity is calculated by

U =
1
2
µ0

∫
V

∣∣∣ ~H∣∣∣2 dV =
1
2
ε0

∫
V

∣∣∣ ~E∣∣∣2 dV (2.29)
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2.2 Toy model - the pillbox cavity

integrating over the cavity volume. Integrating (2.26) yields

Pc =
1
2
Rs

∫
A

∣∣∣ ~H∣∣∣2 dA. (2.30)

Assuming the surface resistance is constant for the whole surface, (2.27) can be revised
to

Q0 =
ω0µ0

∫
V

∣∣∣ ~H∣∣∣2 dV
Rs
∫
A

∣∣∣ ~H∣∣∣2 dA =
G

Rs
(2.31)

where G is known as the geometry constant. An aspect of this geometry constant, when
taking a relation mentioned above into account, is

G ∝

∫
V

∣∣∣ ~H∣∣∣2 dV∫
A

∣∣∣ ~H∣∣∣2 dA ∝ a ∝
1
ωj

(2.32)

This constant is a good parameter to compare different cavity designs, since its definition
is independent of material specifications and size but not to the shape of the cavity.
Another important quantity for a cavity is the so called shunt impedance. It is a direct
measure of the beam-cavity interaction and should be large for the accelerating mode
and small for any other mode, otherwise the beam could excite them. It is also used to
characterize the losses in a cavity. Many definitions for the shunt impedance exist. For
example, the accelerator definition is

R =
V 2
c

Pc
(2.33)

which has the unit ohms per cell. A definition, coming from the circuit theory which
will be explained later is

Rc =
V 2
c

2Pc
(2.34)

with the unit of ohms per unit length. Or even the linear accelerator definition

r =
V 2
c

P ′c
(2.35)

given in ohms per meter.
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2 Theory of superconductivity and cavities

Since R is a quantity of the beam - cavity interaction, it should be maximized in such
a way that the dissipation of the energy into the cavity walls is as small as possible and
as much energy as possible is transfered to the beam. Typically, the ratio R/Q0 is given,
so that the value is independent of the material since it does not depend on the surface
resistance.

Figure 2.14: Since a single cavity will have a single resonance frequency, N coupled
cavities will have N resonance frequencies. To describe such a system,
Thevenin’s Theorem is used. This theorem allows us to draw an equiv-
alent circuit of a coupled system and to describe it in terms of electric
circuits [42].

So far, we discussed a single cell cavity. Since the TESLA cavities are nine-cell cavities
we have to think about the implications for a multi-cell cavity. The shunt impedance,
the geometry factor and due to this, the peak field of the magnetic and electric field
will change. For steering a cavity, these issues are not further important. Taking a look
at Fig. 2.14, the biggest difference is depicted. A cavity can be described as coupled
resonators. And when only a single acceleration mode was present at the beginning, we
will now have 9 ’acceleration’ modes, which will be called passband (Fig. 2.15). This
passband of the lowest eigenmodes of the cavities are all monopole modes, each have
a non vanishing acceleration field along the beam axis. But how about the amplitude
along the axis? What is the phase shift from cell to cell? If the beam will enter a cell at
the wrong phase, just a small acceleration will occur, or even a deceleration can happen.
A small discussion about the TM010 passband will be given and which mode of this
passband should be used for acceleration.
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2.2 Toy model - the pillbox cavity

Figure 2.15: In this picture, the passband of a single TESLA cavity is shown. The
typical bandwidth is 30 MHz with a difference between the π-mode and
the 8/9-π-mode of roughly 800 kHz [11].

To analyze coupled cavities, we assume that each cell has only one resonant mode [13].
Since we are only interested in the TM010 mode, this is no disadvantage. An electric
circuit model is used, to describe the cell to cell coupling (Fig. 2.16). In this model,

Figure 2.16: Equivalent circuit of a 4-cell cavity.

L and C are the characteristic inductance and capacitance of each cell. Only the next
neighbour coupling is considered and this is done capacitively via Ck. The beam tubes
are modeled by a capacitance Cb. Since we have 1� Q, the resistance of circuit can be
set to zero. Using Kirchhoff’s rules of the summation of voltages in a circuit for each
current loop Ij and remembering that the impedances of an inductor is iωL and for a
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2 Theory of superconductivity and cavities

capacitor 1/(iωC), the following coupled equations for a N-cell cavity can be derived:(
1

iωCb
+ iωL

)
I1 +

(
1
iωC

)
I1 +

(
1

iωCk

)
(I1 − I2) = 0 (2.36)

1
iωCk

(Ij − Ij−1) +
(
iωL+

1
iωC

)
Ij +

(
1

iωCk

)
(Ij − Ij+1) = 0 (2.37)(

1
iωCk

)
(IN − IN−1) +

(
iωL+

1
iωC

)
IN +

(
1

iωCb

)
IN = 0. (2.38)

Now multiply by iωC and define ω2
0 = 1/LC, k = C/Ck, γ = C/Cb and

Ω =
ω2

ω2
0

then the equations simplify to

(1 + k + γ)I1 − kI2 = ΩI1 (2.39)
−kIj−1 + (1 + 2k)Ij − kIj+1 = ΩIj (2.40)
−kIN−1 + (1 + k + γ)IN = ΩIN (2.41)

These equations can be written as a vector equation with a tridiagonal matrix equation

A~V =



1 + k + γ −k 0 . . . 0

−k 1 + 2k −k
...

0
. . . 0

... −k 1 + 2k −k
0 . . . 0 −k 1 + k + γ


~V = Ω~V (2.42)

In the following equations, the following notation is used: subscripts refer to the cell
number, superscripts to the mode in the passband. The use of the voltages instead of the
currents is made to remind, that we are now dealing with cavities and not with circuits
anymore. Since we want modes with flat amplitudes the Nth normalized eigenvector
must be

~V (N) =
1√
N


1
−1
1
1
...

 . (2.43)
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2.2 Toy model - the pillbox cavity

with -1 at the nth position of the vector. This boundary condition allows us to determine
the beam tube parameter γ, when substituting (2.43) into (2.42). By solving the first
two equations, we find that (2.43) is satisfied by γ = 2k. The solution to (2.42) can be
easily found, and the eigenvectors are given by

V
(m)
j = B(m) sin

[
mπ

(
2j − 1

2N

)]
(2.44)

for cell number j = 1 . . . N and the mode m = 1 . . . N . B(m) is the normalizing coefficient

B(m) =
√

(2− δmN )/N.

In Fig. 2.17 the eigenvectors for the TESLA cavity are shown. To find the eigenvalues
one has to insert (2.44) into the jth equation of (2.42). Solving the given equation for
Ω, we get

Ω(m) = 1 + 2k
[
1− cos

(mπ
N

)]
(2.45)

With stronger cell to cell coupling, the spacing between the modes will increase and it
will decrease with the number of cells. Having a cavity with equal and opposing traveling
waves which form a standing wave pattern, the phase advance between neighbour cells
can only be zero or π. Since we want a acceleration along a multicell cavity, we use the
phase advance per cell of π along the structure. This is the origin of the name π-mode
used for acceleration because mπ

N depicts the phase shift per cell for the m-th mode and
with N cells.
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2 Theory of superconductivity and cavities

Figure 2.17: The eigenvalues of the electric field strength, represented as length of the
arrow in each cell, for different modes. In the π-mode, the lowest case
here, the distribution is nearly equal in each cell but with a phase shift
of π per cell
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2.2 Toy model - the pillbox cavity

Now, we derived and described the basic and elementary quantities for a cavity. Since
one goal of this thesis is to achieve not only high gradients but also high quality factors,
how can we determine the unloaded Qualityfactor, Q0, during a measurement? For
superconducting cavities this is done by sending a rectangular pulse with frequency of
the mode of interest into the cavity. The cavity will fill, which means that the electric
field will increase until it reaches its maximum amplitude with the given input power.
After turning the RF off, power conservation gives us

Ptot = Pc + Pe + Pt. (2.46)

The total power inside the cavity is the sum of the ohmic losses in the cavity walls Pc,
the power leaking back through the input coupler Pe and the power picked up in the
probe antenna Pt. Analog to the unloaded Q0, a loaded Qualityfactor can be defined as

QL =
ωU

Ptot
. (2.47)

This loaded Qualityfactor, QL, characterizes a cavity with input coupler, or in general
with any attached device. Usually the attached devices will change the QL value in
such a way, that it is several orders of magnitude smaller than the Q0. This is clear,
because any attached device allows an additional dissipation effect. The cavity field
energy decaying after the rf is turned off can be written as

dU

dt
= −Ptot = −ωU

QL
(2.48)

The solution is a simple exponential decaying field

U(t) = U0exp

(
−ωt
QL

)
(2.49)

⇒ τc =
QL
ω
. (2.50)

This means that the measurement of the decay time is a direct measurement of the QL.
Next step is to derive the Q0 from this. We put (2.47) into (2.48) and take the inverse,
leading to

Ptot
ωU

=
Pc + Pe + Pt

ωU
(2.51)

⇒ 1
QL

=
1
Q0

+
1
Qe

+
1
Qt

(2.52)
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2 Theory of superconductivity and cavities

when we assume analog loss mechanisms for each dissipation, which allows us to state a
quality factor for each mechanism. If we now define the coupling strength β

βx =
Q0

Qx
(2.53)

⇒ 1
QL

=
1
Q0

(1 + βe + βt) (2.54)

⇔ Q0 = QL (1 + βe + βt) (2.55)

we can calculate the Q0 with the measured parameters and when the coupling is known.
More details are shown in chapter 5.
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3 Control theory applied to
superconducting cavities

Control theory deals with the design and analysis of closed loop control systems. The
design of a digital signal processing loop is hardly possible without a basic mathematical
understanding of the signal and its properties. Both, transferfunction (classical control)
and state-space representation (modern control) and the mathematics and physics of the
underlying processes are described. After the basics have been set in Section 3.1, we will
concentrate on the accelerator itself (Section 3.2) and in Section 3.3 especially onto a
single cavity. The last section will consider the use of the derived results at FLASH.

3.1 Digital signal processing

In general there are several reasons for digital accelerator control. A high flexibility,
easy upgrades and repeatability is given and multi user operation is possible. Also,
a longer distance between the sampling point and processing of the signal is possible
in comparison to analog control. Remote control and diagnostics is possible without
additional hardware. In comparison, analog control shows shorter latency and bigger
radiation hardness. But these problems of the digital control can be solved by further,
more sophisticated technologies. The algorithms which are needed to be implemented to
have an finite state machine are quite sophisticated but can be implemented in digitally
controlled systems. Besides feedback, feedforward and even adaptive feedforward can
be realized in digital controller. Fault recovery, exception handling and the changing
of beam settings, turn on procedures and other high level applications (e.g. automated
cavity tuning) can be managed much easier and completely automated. The needed
methods and definitions will be explained and derived in this section.
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3 Control theory applied to superconducting cavities

3.1.1 Basic definitions

Before we can get deeper into control theory, we need to define the term ’signal’. A
signal s(t) is generated by a measurement and can be seen as a real, time-dependent
property and it should be an energy signal, which is∫ ∞

−∞
s2(t)dt <∞.

The instant power is defined as s2(t). Most of the elementary functions are no energy
signals, because they are infinitely long and the integral does not converge. But treating
them as power signals

lim
T→∞

∫ T/2

−T/2
s2(t)dt <∞

we will have finite values. In the end, we will get a signal, which can be discrete or
continuous, analog or digital, causal or non-causal. We will only consider causal systems,
which means that the future state of the system only depends on the past and the present
state and can be calculated with the previous signals. Another definition is the domain.
We will consider only two domains, time and frequency domain, where it depends on
the simplification of the problem which representation will be chosen. How to switch
between these representations will be explained in the next section. After all, we will
consider only linear, causal, time-invariant system (LTI-systems) which can be described
by linear ordinary differential equations (LODE). The complete definition of such a LTI-
system is

1. Linearity
Given system F with F (x1[n]) = y1[n] and F (x2[n]) = y2[n], then F is called linear
if

F (x1[n] + x2[n]) = F (x1[n]) + F (x2[n])

and with this, for two linear systems:

F2(F1((x[n])) = F1(F2(x[n]))

2. Time-invariance
Given F with F (x[n]) = y[n], then F is time- or shift-invariant if

F (x[n− k]) = y[n− k] ∀ k ∈ N
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3.1 Digital signal processing

3. Causality
If the output depends only on present and past input values it can be written as

y[n] =
i=0∑
i=−∞

ai · x[n− i]

The last distinction we use is the type of a system, depending on the number of inputs
and outputs.

1. MIMO (multiple input - multiple output) systems; most general

2. SISO (single input - single output) systems; elementary systems like gain, delay
and combinations of those

3. MISO (multiple input - single output) systems; for example an adder (in rf nomen-
clature a mixer)

With these basic definitions, we can start to construct everything we need.

3.1.2 Control theory

Impulse response

The impulse response of a linear system is its response to a δ-pulse on its input (see
Fig. 3.1). A quite often used analogy is the ringing bell which got hit by a hammer.
The hammer excites a δ-like excitation and the bell will ring. The ringing is the impulse
response of the system ’bell’. The way, the bell rings is characteristic for the system and
contains eigenfrequencies, each decaying with its own characteristic time constant. The
impulse response h[n] is the fingerprint of the system and all informations can be found
in the impulse response.
Two systems with the same impulse response are identical. The input signal is written
as

x[n] :=
N−1∑
i=0

xnδ[n− i] (3.1)

then the output of the system can be expressed as

y[n] :=
N−1∑
i=0

xnh[n− i] (3.2)
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3 Control theory applied to superconducting cavities

Figure 3.1: The concept of impulse response [21].

This is only possible in linear systems because a sum will stay a sum and a product of
scalars will stay a product of scalars. Knowing the impulse response of the system, one
can calculate the output of any given input signal 1. Another way to write (3.2) is

y[n] = x[n] ∗ h[n]

where ∗ is the convolution operator which is defined as

• continuous convolution
Given two functions f, g : D → R where D ⊆ R the convolution of g with f, written
f ∗ g is defined as

(f ∗ g)(t) :=
∫
D
f(τ)g(t− τ)dτ

• discrete convolution
Given two functions f, g : D → C where D ⊆ Z the convolution of g with f, written
f ∗ g is defined as

(f ∗ g)[n] :=
∑
k∈D

f [k]g[n− k]

Transformations

As mentioned before the domain in which we represent the LODE or impulse response
of the system, is chosen in such a way that it can be treated and understood in a simple
way. The principles of domain transformation are explained in this section. In general
one can choose between time or frequency domain, but also auto-correlation or other
spatial domains exist.

1See the analogy to the Green function in mechanics or electrodynamics or to the propagators in
quantum mechanics.
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3.1 Digital signal processing

For our case it is appropriate limiting ourselves to the time and frequency domain.
We start with the Fourier transformation, a linear operator, which maps functions to
the complex space. It can be interpreted as a decomposition of a time-continuous signal
into its frequency components x(t)→ U(ω). The definition is as follows:
Given f : D → C, D ⊆ R, the Fourier transformation of f is

F (ω) :=
∫
D
f(t)e−iωtdt.

An important feature of the Fourier transformation is

F {x1 (t) ∗ x2 (t)} = X1 (ω) ·X2 (ω) .

Therefore the Fourier Transformation can be quite handy to describe LTI systems, but
it is not always well defined, as damped or growing oscillations can not be decomposed
into ordinary sine and cosine functions. Furthermore the step function would lead to an
infinite frequency spectrum. But these inconsistencies can be solved. Adding exponential
damped or growing sine and cosine functions by substituting the frequency iω by a
complex number p:

p = σ + iω

where ω is the known real frequency and σ is an arbitrary (real) damping term. The
result is the more generalized Laplace Transformation

S(p) :=
∫ ∞

0
s(t)e−ptdt.

In Fig.3.2 a sketch of the link between the domains due the Laplace transformation is
given. The z-transformation, a tool which is as powerful as the Laplace-transformation,
but which is applicable to digital systems and signals, can be introduced. The concept
is based on the periodicity of digital signals.
Given h : Z+

0 → R, the z-transformation of h is

H(z) :=
∞∑

n=−∞
h[n]z

with z = eiω This substitution maps the frequency axis to the unit circle in the complex
plane. This concept is useful because it automatically accounts for the periodicity of ω.
The z-plane or the unit circle is a representation of one period of the digital frequency.
By adding a damping term σ to the digital frequency, we can extend this concept onto
the whole complex plane C. This representation allows a gentle way to discuss the
stability of a system, what can be seen in Fig. 3.4.
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3 Control theory applied to superconducting cavities

Figure 3.2: The representations in the frequency or time domain for continuous signals
are linked via the Laplace-transformation, which can be considered as a
more general Fourier-Transformation. For discrete time systems you have
to use the so called z-Transformation [21].

Transferfunctions and state space

The transferfunction (of a continuous signal) is defined as the Fourier- or Laplace trans-
formation of the impulse response and can be written as

Y (s) = H(s)U(s)

where Y(s) and X(s) are the transformed signal of the output and input (see Fig. 3.3)

H(s) =
Y (s)
U(s)

The general form of a LODE is

y(n)(t) + an−1y
n−1(t) + . . .+ a0y(t) = bmu

(m)(t) + bm−1u
n−1(t) + . . .+ b0u(t)

with m,n ∈ N0 and ai, bi ∈ R. With this LODE, the transferfunction in its polynomial
form looks like

H(s) =
∑i=n

i=0 ais
i∑i=m

i=0 bisi

While the transferfunction is only valid for SISO-systems, the State-Space-Representation
is applicable to MIMO-systems and will be the concept of choice throughout the later
sections when we describe the cavity and model the behavior of the complete system.
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3.1 Digital signal processing

Figure 3.3: Controller and plant in closed loop operation [21].

The concept of the state of a dynamic system refers to a minimum set of state variables,
which describes the system and its response to any given set of inputs completely. A
state-determined system model has the characteristic that a mathematical description
of the system in terms of a minimum set of variables xi(t), i = 1, . . . , n together with the
knowledge of those variables at an initial time t0 and the system inputs for time t ≥ t0,
are necessary to predict the future system state and outputs for all time. The state
variables are an internal description of the system which completely characterize the
system state at any time and from which any output variables yi(t) may be computed.
There is no unique set of state variables that describe any given system. Many different
sets of variables may be selected, but for a given system the order n is unique and is
independent of the particular set of state variables chosen. The description can be chosen
in terms of variables which are measurable or as indirect variables. The important point
is that any set of state variables must provide a complete description of the system.
Consider SISO-system we only had a single LODE. But considering MIMO-systems, the
system is expressed as a set of n coupled first-order ODE, known as state equations,
which in general case look like

ẋ1 = f1 (~x, ~u, t)
ẋ2 = f2 (~x, ~u, t)

...
ẋn = fn (~x, ~u, t)

(3.3)

where the fi (~x, ~u, t) may be in general nonlinear, time varying functions of the state vari-
ables, the system inputs and time. A way to simplify this, is to write down a state vector
~x(t) = [x1(t), x2(t), . . . , xn(t)]T and an input vector ~u(t) = [u1(t), u2(t), . . . , ur(t)]

T . The
system state at any instant time may be interpreted as a point in an n-dimensional state
space, and the dynamic state response can be interpreted as a path in this state space.
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3 Control theory applied to superconducting cavities

With vector notation, (3.3) can be written as

~̇x(t) = ~f (~x, ~u, t) (3.4)

where ~f (~x, ~u, t) is a vector function. Since we are still considering only the case of LTI-
Systems, (3.4) becomes a set of n coupled first-order LODEs with constant coefficients

ẋ1 = a11x1+ . . .+ a1nxn+ b11u1+ . . .+ b1rur
ẋ2 = a21x1+ . . .+ a2nxn+ b21u1+ . . .+ b2rur

...
...

ẋn = an1x1+ . . .+ annxn+ bn1u1+ . . .+ bnrur

(3.5)

Equation (3.5) can be written into a compact matrix form

d

dt


x1

x2
...
xn

 =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
an1 an2 . . . ann



x1

x2
...
xn

+


b11 . . . b1r
b21 . . . b2r
...

...
bn1 . . . bnr


u1

...
ur

 (3.6)

which can be summarized as
~̇x = A~x+ B~u (3.7)

where A is the state matrix and B the input matrix. The system output is defined to
be any system variable of interest. An important property of the linear state equation
description is that all system variables may be represented as a linear combination of
the state variables xi and the system input ui. An arbitrary output variable in a system
of order n with r inputs may be written as

y(t) = c1x1 + c2x2 + . . .+ cnxn + d1u1 + . . .+ drur (3.8)

where ci and di are constants. For a total amount of m output variables, we yield m
equations 

y1

y2
...
ym

 =


c11 c12 . . . c1n

c21 c22 . . . c2n
...

...
cm1 cn2 . . . cmn



x1

x2
...
xn

+


d11 . . . d1r

d21 . . . d2r
...

...
dn1 . . . dmr


u1

...
ur

 (3.9)
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3.1 Digital signal processing

and (3.9) can be written in the compact form

~y = C~x+ D~u (3.10)

where C is the output matrix and D the feedthrough matrix. The equations (3.7) and
(3.10) are the key equations in the concept of state space representation. The matrices A
and B represent the properties of the system and are determined by the system structure
and elements. The output matrices C and D are chosen to derive the wanted output
variables. If we consider the case of a SISO-system, both methods, transferfunction and
state-space, are equivalent and can be transformed into each other. Even if we talk
about MIMO-systems, a matrix-transferfunction can be derived, where each element is
an individual scalar transferfunction relating a given component of the output ~Y (s) to
a component of the input ~U(s). The matrix-transferfunction can be calculated through

H(s) =
(C adj(sI−A)) + det[sI−A]D

det[sI−A]
(3.11)

with I as unity matrix. An important issue is, that all the entries Hij(s) of the matrix-
transferfunction in (3.11) have the same denominator. This means, all input-output
ODE’s for the system will have the same characteristic polynomial. This will be under
investigation in the next section, when we discuss the stability of a system.

Stability considerations

First, we will discuss stability in terms of the transferfunction. A transferfunction can
be written as

H(s) =
∑i=n

i=0 ais
i∑i=m

i=0 bisi

It is often convenient to factorize the polynomials in the numerator and denominator
and to write the transferfunction in terms of those factors:

H(s) =
N(s)
D(s)

=
∣∣∣∣ambn

∣∣∣∣ · ∏M
k=1(s− zk)∏N
i=1(s− pi)

(3.12)

This is, as mentioned in the section above, concerning equation (3.11), the reason why it
is important that the matrix entries will have the same denominator. The root of N(s)
equal zero is called zero, while the root of D(s) equal zero is called pole. If the location
of the zeros and poles are known, you can immediately say whether the system will be
stable or not.
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3 Control theory applied to superconducting cavities

Zeros means, that signals of these frequencies are completely rejected by the system.
They are of major interest, because they can cancel out poles. System instabilities are
represented through poles in the polynomial at these frequencies. This means, that the
output signal will grow till infinity.

Figure 3.4: Depending on the poles and zeros of your transfer function, you can identify
regions of stability and instability [21].

By knowing the zeros and poles of the polynomial, the system behavior can be foreseen
under known input (see Fig. 3.4). If the real part of the pole will be in the left half
plane of the z-plane one will obtain a stable system and vice versa one has an unstable
system if the real part lies in the right half plane. Different techniques can be used to
derive a statement about the stability of the system. For example

• Hurwitz criterion

• Direct calculations like root locus, Bode Plot, Nyquist criterion

• Simulation (often used for non-linear systems)
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3.1 Digital signal processing

When talking about the stability of the state-space-representation, we have to look at
equation (3.11). The denominator det[sI −A] is the characteristic polynomial. If the
eigenvalues solve the relation <(λi) ≤ 0 ∀i, the system state is stable. Another stability
is the BIBO-stability. This means, that if the input is bounded and below a certain
value, then the output will also be bounded.

3.1.3 Vector sum

The vector sum is defined as

~Vsum cos (φsum) =
∑
i

~Vi,cal cos (φi,cal) =
∑
i

(
a b
−b a

)
~Vi,cav cos (φi,cav) (3.13)

The effective accelerating gradient is the sum of the calibrated individual cavity fields.
The calibrated field is the field at the pick up antenna inside the cavity which is rotated
and scaled. The scaling is necessary due to different attenuation of the signals. The

Figure 3.5: Driving multiple cavities with one klystron will make it impossible to reg-
ulate individual signal. This situation requires the control of the so called
vector sum.

different cable lengths lead to individual phase drift of the signals which needs to be
compensated by rotating the signals in the complex plane. Another reason for the rota-
tion is explained in section 3.1.4. The advantages for the vector sum are the cost savings
and the reduced maintenance since less units need to be controlled. The disadvantages
are that the calibration is quite a challenge (see 3.2.2) and that individual limits can
not be considered as easy in comparison to single driven cavities. Also bypassing of
individual cavities can be difficult if it becomes necessary during operation.
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3 Control theory applied to superconducting cavities

3.1.4 IQ-sampling

In general, the so called IQ-sampling, can be favorable in comparison to the Amplitude-
Phase-sampling, when large errors in amplitude and phase are expected. The reason
for this is that you can control amplitude, phase and even frequency with two complete
similar feedback paths which can act in parallel onto each component. The terminology
’IQ’ comes from the origin of the representation.
Any sinusoidal signal

y(t) = A · sin (ωt+ ϕ0) (3.14)

can be represented as a phasor, which is a similar concept to a vector, in relation to
a local oscillator phasor in the complex plane (see Fig. 3.6). If the frequency is posi-
tive, the phasor will rotate anti-counterclockwise in the complex plane. By using basic
trigonometric relations, we can decompose (3.14) into two parts

y(t) = A · sin (ωt+ ϕ0) (3.15)
⇔ y(t) = A cos (ϕ0)︸ ︷︷ ︸

:=I

sin (ωt) +A sin (ϕ0)︸ ︷︷ ︸
:=Q

cos (ωt) (3.16)

y(t) = I · sin (ωt) +Q · cos (ωt) (3.17)

Here you see that the so called in-phase (I) component has a sine-term, while the

Figure 3.6: In complex representation and do a coordinate transformation we use the
real and imaginary part, the so called I- and Q-Part, instead of the Am-
plitude and Phase of a signal. [36]

quadrature-phase (Q) component has a cosine term, so it is phase shifted by 90 degrees
to the I component.
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3.1 Digital signal processing

Usually, for feedback and controller loops IQ is used while for a graphical display
of the signal A-φ representation is used, since it is more intuitive for our imagination.
An ADC sampling of the signal will only allow us to measure one of the components
at a time. But with a simple method we can still derive all needed informations. If
the IQ-phasor is measured at a certain, well defined time, this phasor can be compared
to a reference phasor, the setpoint, to see if any changes in amplitude or phase have
happened. Since a time advance also means a phase advance, a rotation of the phasor
needs to be done. This rotation is done by the so called loop-rotation matrix, which
need to compensate the phase shift for the comparison with the setpoint, but can also
compensate phase drifts due to different cable lengths and scale the phasor, if needed
due to different attenuations (see equation 3.13). By having a phase shift of 90 degrees
between each sample, which means that the sampling frequency needs to be 4 times the
frequency of the sampled signal (see Fig. 3.7), you can assure that both components, I
and Q, can be sampled and digitized within one period of the sampled signal. Of course,
any relation between sampling frequency and signal frequency can be used, as long as
the ratio is an integer, implying a phase shift of ∆ϕ = 2π

m between two samples. With
m=4, the loop rotation matrix will simplify in such a way, that it consists only of 0,1
and -1. This makes digital signal processing a lot faster than using linear approximation
of the transcendental function sine and cosine but can also lead to problems (Chapter
6).

Figure 3.7: Principle of the sampling scheme at FLASH for IQ control [36]. Left: the
phaseshift is shown which need to be compensated by the loop-rotation-
matrix. Right: The sampling frequency is 4 times the sampled signal
frequency. This guaranties a sampling scheme of Q, I, -Q, -I and will bring
every information we need.
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3 Control theory applied to superconducting cavities

3.1.5 Digitization and preprocessing

In this section, some basic techniques and concepts used for preprocessing and digitiza-
tion of an analog signal will be explained. The principle of an Analog to Digital Converter
(ADC) is explained Fig. 3.8. Digitization is a process which maps a continuous signal
onto a sample

s(t)→ sn := s [n] := s(nT ) ; n ∈ Z ∨ N0

where s is seen as constant over the time interval. T is the period of the sampling
frequency T = 1/fs. Two effects have to be considered:

1. time discretization

2. amplitude quantization

Amplitude quantization can be quite precise, when choosing high resolution ADCs up
to 20 bits, but this means a decrease in your sampling frequency.

Figure 3.8: Samples are taken from the analog input signal (A). The time discretiza-
tion is done with the sampling frequency fs. The voltage is stored in a
sample-and-hold device (B) which can be a simple capacitor. Finally the
voltage across the capacitor is converted into a digital number (C), usually
represented by n bits of digital logic signals [21].
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3.1 Digital signal processing

Time discretization can be influenced by clock jitter (phase drift of the trigger signal)
and this effect will become stronger at higher frequencies. This is the reason why we
are using down- and upconverters to switch between different frequencies in a signal
processing chain. For example, at FLASH the 1.3 GHz driving signal is downconverted
to 250 kHz as an intermediate frequency and will be sampled with 1 MHz or at the
vertical test stand the driving signal is converted to 9 MHz and sampled with 81 MHz.
A converter usually consists of an rf-mixer and a filter at the mixer output. First the
rf-mixer is explained (Fig. 3.9). When mixing two sinusoidal signals, the output signal
can be calculated to

y(t) = yRF (t) · yLO(t) =
1
2
ALOARF ·

(sin [(ωRF − ωLO) t+ (ϕRF − ϕLO)])︸ ︷︷ ︸
lower sideband

+ (sin [(ωRF + ωLO) t+ (ϕRF + ϕLO)])︸ ︷︷ ︸
upper sideband


(3.18)

This means, that the input signal will be mirrored onto two frequencies, (ωRF − ωLO)
and (ωRF + ωLO). Applying the IF as an input signal you will have an upconversion, if
the filter is a highpass. If the input signal is the RF signal and the filter a lowpass you
will have a down-conversion (Fig. 3.10)

Figure 3.9: The principle of an ideal mixer is shown in this graph. The original signal
with frequency fRF is mixed with a local oscillator signal with a frequency
fLO. This results in an intermediate signal with frequency fIF .

When the LO frequency and phase are constant in time, all information of the RF
signal is transfered to the IF signal. Until now, an ideal mixer has been considered. A
real mixer will generate higher harmonics since they are non-linear devices. This means,
that the spectrum of the output will have signals at m · fRF ± n · fLO. Fig. 3.11. shows
the principle output spectrum.
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3 Control theory applied to superconducting cavities

Figure 3.10: The upper plot shows a down-converter, the lower plot an up-converter.
Both signals are mixed with an ideal mixer [36].

Figure 3.11: A real mixer will have sidebands, due to non-linearities. These sidebands
will be at higher/lower harmonics of the difference and sum of the input
frequencies [36].
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3.1 Digital signal processing

Now we know how the rf signal is converted to a lower frequency to assure a proper
sampling and how the digitization works. But what does ’proper’ sampling mean? This
question leads to the important Nyquist-Shannon-Theorem, published in 1940. Proper
sampling means, that we can reconstruct exactly the analog signal from our samples.
It should be clear, if we choose (infinite) high sampling frequencies and sample every
point of our analog signal this goal can be achieved. Here we have the problem (besides
the issue to generate infinite high frequencies) that we will get a huge amount of data.
We want to choose the lowest frequency which is needed, to assure proper sampling.
The solution to this problems is the mentioned Nyquist-Shannon-Theorem, which can
be written as:

’A continuous signal can be properly sampled if it does not contain fre-
quency components above fcrit = fs

2 .’

Frequency components in the signal which are larger than the Nyquist frequency (f ≥ fcrit)
will be ’aliased’ to a mirror frequency f∗ = fcrit − f where fs is the so called Nyquist-
frequency. This means, that the sampling frequency needs to be at least twice the
frequency of interest. Some examples are shown in Fig. 3.12.

Figure 3.12: (a) The ratio of sampled signal frequency and sampling frequency is 0.09
and 0.31, respectively (b). This results in a proper sampling and the signal
will be sampled correctly. (c) The ratio is 0.95 which means, that the
sampling frequency is nearly equal to the sampled frequency. Therefore,
a shift in the frequency will occur which is called aliasing [21].
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3 Control theory applied to superconducting cavities

3.2 Accelerator as a system

3.2.1 What we want to achieve and what we can control

We can consider a cavity as a system, where the ODE will be derived in section 3.3.1.
This allows, that the principles of control theory can be used to describe and control an
accelerator (see Fig. 3.13). For details what requirements we want to achieve I refer to
section 4.1. In this section, a principle sketch of the variables we have to control and the
turning knobs to steer the system will be discussed. Important for the beam is a high

Figure 3.13: General layout of amplitude feedback of an accelerator (compare Fig.3.3).

stability of the accelerating gradient and the phase. Fluctuations in the field strength
would lead to fluctuations in the beam energy. And if the phase of the accelerating field
is not synchronized with the beam phase, high energy conversion to the beam can not
be achieved. Both, amplitude and phase of the accelerating gradient, are the parameters
we have to control. (Fig. 3.14)
Considering the cavity, a good timing of beam arrival and cavity filling is needed, since
we want to operate close to the quenching limit. The beam induced voltage will com-
pensate the additional power sent to the cavity, which will add up to a constant field
strength if beam current and generator current matched in their amount and time. If
not, additional power could be send to the cavity and will raise the field strength which
can lead to a quench. And we have to make sure, that the resonance criterion is fulfilled,
which means that the driving signal from the klystron matches the frequency and the
phase of the accelerating field. In Fig. 3.15 the time structure of the beam at FLASH is
given. The frequency itself can be tuned at the klystron, but the phase for each cavity
needs to be adjusted just in front of the cavity (Fig. 3.16). This can be done by motor-
ized input couplers and phase shifter to steer to a wished state.
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3.2 Accelerator as a system

Figure 3.14: Description of the parameters we need to concern. The phase of the
bunch Φb, the phase ϕ and amplitude U of the accelerating field [11].

Figure 3.15: Time structure at FLASH. The filling time is about 500 ms. After this,
the steady state of the cavity will be reached and the beam is injected.
The beam pulse length will vary, but the flattop has a length of 800 ms.
Then the rf signal is turned off and the field inside the cavity will decay.
The pulse structure can have a different amount of bunches, charge per
bunch and pulse repetition time [3].
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3 Control theory applied to superconducting cavities

The ratio of the power send to an individual cavity with respect to the klystron power
is usually fixed and can not be tuned. The coupling β as introduced in chapter 2 is
correlated to the power we need to fill the cavity to its equilibrium state and to the time
we need for that. This coupling, which can be controlled via antenna penetration depth
is linked to the QL, where QL is the value we want to regulate 2. Of course the phase
of the driving signal is also steered, but the phase will be set once and any fast changes
in the phase will be compensated by the fast piezo-tuners attached to the cavity instead
of the slower phase-shifter in the transmission line. The QL again has influence on the
cavity bandwidth and to the decay time of the cavity. A high QL would be desirable to

Figure 3.16: The filling time is controlled by the QL which in turn can be controlled
by the coupling of the driving signal to the cavity. The input power
coupling and the phase of the driving signal can be controlled via 3-stub-
tuner, motorized antenna or phase-shifter.

decrease the cryogenic cost and gain a higher field stability. But a high QL would also
mean longer filling time, so the pulse to pulse spacing needs to increase and the band-
width of the resonance would become narrower. A too narrow resonance amplitude3

would result in a small window for the controller to stay on resonance. Therefore the
lock on the peak could be lost by small changes of the resonance frequency itself. But if
we have a wide bandwidth to ensure the lock no matter what disturbances arise, then
the decay time is too low, the field would decay too fast and the cavity would need more

2The controller will translate a change in QL into an antenna depth variation. This is an example for
the state variables which describe a system. There are several sets which can be used. They can have
an engineering or physical meaning but they can be mapped onto each other.

3e.g. ω0 = 1.3 GHz, QL ≈ 109−10 → ω1/2 ≈ 0.1 - 1 Hz
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3.2 Accelerator as a system

power to keep a constant field. The influence of the coupling to the bandwidth and phase
of the resonance curve is shown in Fig. 3.17. The coupling and hereby QL can be derived

Figure 3.17: In this plot, different bandwidths for different couplings and the phase
change is shown (QL ∝ β, β is not the coupling but the damping in this
case) [21].

by sampling and analyzing the reflected Power (as shown in chapter 2). Examples of the
influence of the coupling to the reflected power are shown in Fig. 3.18. The basic set of

Figure 3.18: Different couplings lead to different reflected waves at the end of the
transmission line.

values we can steer to maintain a constant accelerating gradient is the klystron power
and the QL. Of course, other infrastructure parameters, like helium-pressure inside the
modules, injector gun parameters, are also relevant but are not taken into account.
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3.2.2 Noise sources and disturbances

Now it is evident that we need to adjust the frequency and phase of the driving signal
from the klystron and the QL. These parameters are our steering knobs besides the
amplitude of the driving signal, which we need to consider when we plan our control
system. In the following we will discuss, which disturbances arise during acceleration
and what noises need to be compensated to reach high energy stability of the beam. One
has to take the noise sources and disturbances into account the realize a correct model
of our accelerator, which we want to describe from a mathematical point of view.

HOM excitations

In chapter 2 we could see, that higher order modes (HOMs) exist in the spectra of
coupled accelerating cells. These HOMs are unwanted, since they can deflect, interrupt
or decelerate the beam. They can be induced by the electric field of the bunch passing
through the cavity (so called wakefield) and should be only from the set of TM-modes.
But this is only true for a pillbox cavity, since beam pipes can create different field
distributions and the bunch is not always traveling along the cavity symmetry axis but
will do some oscillations (Fig. 3.19). These off axis passages can induce TE-modes or
hybrid modes like TE/TM and TM/TE.

Figure 3.19: HOMs can arise during operation due to beam - cavity interaction. This
will lead to a different field pattern which will be seen by the subsequent
bunch [21].

HOMs can be damped in a cavity when attaching so called HOM-couplers to it. They
are output-couplers which will extract all unwanted modes inside the cavity in a specific
band (notchfilter) but will leave the π-mode unchanged. HOMs are one of the reasons
why the number of cells should not be too large, since they can be trapped inside a
cavity and their electric or magnetic field in the end cell is to weak to be coupled out.
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3.2 Accelerator as a system

Microphonics

An important noise source are ’microphonics’. They are generated by vibration in the
helium pumps, ground vibrations or more general by any mechanical vibration in or
near the machine. It is random generated noise with a Gaussian distribution, which can
detune the resonance frequency, e.g. up to 10 Hz at FLASH. They can not be reduced
but suppressed with a high gain in the feedback loop. On the other hand, a too high
gain can cause oscillations in the feedback system, where this limits the gain used in
operation. Nevertheless, microphonics are an important issue when choosing the QL for
the cavities, which can be seen in Fig. 3.20.

Figure 3.20: This plot shows that the maximum frequency detuning, caused by mi-
crophonics, even influences the QL. To assure that the cavity will stay
on resonance with the driving signal in presence of the microphonics, the
bandwidth needs to be broadened [35]. Otherwise the klystron power
needs to be increased.

Microphonics can play an essential role since we want to push QL to new frontiers for
future accelerators.

Lorentz force

A dominant and repetitive error source at accelerators is the so called Lorentz force
detuning. The rf-pulse sent to the cavity and the time-dependent induced field by the
electron bunch will create attractive forces at the iris and repulsive force at the equatorial
area of the cavity.
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3 Control theory applied to superconducting cavities

This results in mechanical oscillations of the cavity and will detune the cavity with each
pulse/bunch. Fig. 3.21 shows such a detuning. The maximum change of the resonance
peak depends on the accelerating gradient. To compensate these deformations, fast

Figure 3.21: Lorentz force will create problems matching the driving signal to the
cavity conditions during filling time [11].

piezo-tuners are attached to the cavities. Two sets are assembled to each cavity. One
is working as a sensor, the other as an actuator [41]. The Lorentz force detuning can
also be regulated through feedforward or adaptive feedforward since we are dealing with
repetitive and predictable errors.

Beam loading

One of the main topics in cavity control systems is the so called beam loading. A
single bunch passing through the cavity induces a voltage which is out of phase with the
accelerating gradient and will lower the effective field for the next passing bunch. This
effect can be neglected if the bunch repetition rate is low in comparison to the cavity time
constant. But with intense long bunch trains this effect will become more important. To
compensate beam loading, feedforward is applied, which means raising the amplitude of
the driving signal for the duration of the beam in the cavity. A correction signal can be
send to the klystron before the beam reaches the cavity. Because the pulse structure is
loaded to the rf gun before the beam is generated, the information can be send to the
feedforward controller and is fed to the klystron.
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3.2 Accelerator as a system

Figure 3.22: Beam Loading occurs because the bunch traveling through the cavity
generates an electric field which will decrease the cavity field (the factor
by which the gradient decreases depends on the bunch charge, cavity
bandwidth and the phase difference of bunch phase and gradient phase)
[40].
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3.3 Cavity behavior

In this section, an ODE describing the cavity will be derived and transfered into state
space representation. All physical quantities introduced in this chapter are equal to those
in chapter 2. Only one new definition will be needed. As has been shown in chapter
2, cell to cell coupling is possible via magnetic and/or electric field and the system can
be described in terms of an equivalent LCR circuit. Modeling an LCR circuit needs to
define a resistor R, in which the same power is dissipated as in the cavity

Pdiss =
1
2
V 2
cav

R

and this leads to a useful relation4

R =
1
2
·
(
r

Q

)
·Q0

3.3.1 Description of a cavity via ODE

In Fig. 3.23, the driven LCR-circuit which models a single cavity is sketched. The rf
power source is a klystron. It can be modeled as a current source. The input coupling
is a lossless transformer and has a ratio of 1:N, therefore the impedance relation is

Zcav = N2 · Z0. (3.19)

A circulator is inserted into the transmission line to absorb any reflected wave, which
occurs at the cavity, since the klystron could be destroyed.
If we now use basic formulas from circuit theory

W =
1
2
CV 2

0 (3.20)

Pdiss =
V 2

0

2R
(3.21)

the quality factor Q0 can be written as

Q0 =
2π
T
·

1
2CV

2
0

1
2
V 2
0
R

(3.22)

4Here I refer back to chapter 2.
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3.3 Cavity behavior

Figure 3.23: The Klystron - cavity System can be seen as a electric circuit with specific
loads, inductance and resistance. The generator current and the beam
current need to be matched through the system [14].

where V0 is the amplitude of the oscillating voltage and T the time period. Since the
resonance frequency of an undamped LC-circuit is ω0 = 1√

LC
, (3.22) can be rewritten to

Q0 = ω0RC =
R

Lω0
=
ω0W

Pdiss
. (3.23)

Instead of the transformation ratio 1:N, we will introduce the coupling constant β, to
give this variable another new interpretation. It is defined, in circuit theory, as the ratio
of the resistor R in the LCR circuit to the transformed external load

β =
R

N2Z0
→ N =

√
R

βZ0
(3.24)

with this definition we can now describe the external load Zcav and the parallel cavity
resistor R in a simple way. With the definition of the loaded shunt impedance RL

1
RL

=
1
R

+
1

Zcav
(3.25)

→︸︷︷︸
(3.24)

RL =
R

1 + β
(3.26)

↔︸︷︷︸
def. in 3.3

RL =
QL
Q0

R. (3.27)
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This also leads to the relation

R

Q0
= ω0L =

1
ω0C

=

√
L

C
. (3.28)

Now describe the driven LCR circuit with Kirchhoff’s rule

IC + IR + IL = I (3.29)

and insert the formulas
İL =

V

L

İR =
V̇

RL

İC = CV̈

replacing the inductance and capacitance by relations derived above, one obtains the
differential equation

V̈ (t) +
1

RLC
V̇ (t) +

1
LC

V (t) =
1
C
İ(t) (3.30)

⇔ V̈ (t) +
ω0

QL
V̇ (t) + ω2

0V (t) =
ω0RL
QL

İ(t) (3.31)

3.3.2 Description of a pulsed cavity via state space representation

From ODE to LODE to matrix equation

Equation (3.31) is used as a starting point to discuss the cavity behavior with transient
behavior, which means turn rf on/off and beam will be injected after some delay. We will
limit ourselves to the π mode. Begin with equation 3.31, but in a vector-representation,
since we want to switch to complex equations

~̈V (t) +
ω0

QL
~̇V (t) + ω2

0
~V (t) =

ω0RL
QL

~̇I(t). (3.32)

Because QL is high, we have a weakly damped system. This means that the resonance
frequency is only slightly changed 5

ωres = ω0

√
1− 1

4Q2
L

≈ ω0

50.024 Hz with ILC design value of QL
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3.3 Cavity behavior

The driving current has a time dependence eiωt and the Fourier component of the beam
current of the pulsed beam are harmonic to it. Therefore, we can separate the fast rf
oscillation from the slowly changing amplitudes and phases or from real and imaginary
parts of the field vector.

~V (t) = (Vr(t) + iVi(t)) · eiωrf t

~I(t) = (Ir(t) + iIi(t)) · eiωrf t

When we now insert these information into the ODE (3.32), we obtain a linear ODE

V̇r + ω1/2Vr + ∆ωVi = RLω1/2Ir

V̇i + ω1/2Vi + ∆ωVr = RLω1/2Ii

Here ω1/2 = ω0
2QL

is the cavity bandwidth and ∆ω = ω0−ωrf the detuning of the cavity.
This LODE can be written in a matrix form:

d

dt

[
Vr
Vi

]
=
[
−ω1/2 −∆ω

∆ω ω1/2

] [
Vr
Vi

]
+
[
RLω1/2 0

0 RLω1/2

] [
Ir
Ii

]
. (3.33)

State space and stability of the cavity with feedback

The matrix equation (3.33) is the starting point to derive the state space representation.
First, we have to apply the Laplace-transformation and solve for Ur(s) and Ui(s) (with
~U(s) = RL~I(s))

~Y (s) =
[
Vr(s)
Vi(s)

]
=

ω1/2

∆ω2 + (s+ ω1/2)2

[
s+ ω1/2 −∆ω

∆ω s+ ω1/2

] [
RLIr(s)
RLIi(s)

]
. (3.34)

Because the transfermatrix H(s) is defined by ~Y (s) = H(s) · ~U(s), the cavity transfer-
matrix is

Hcav(s) =
ω1/2

∆ω2 + (s+ ω1/2)2

[
s+ ω1/2 −∆ω

∆ω s+ ω1/2

]
=
[
H11(s) H12(s)
H21(s) H22(s)

]
(3.35)

The off-diagonal elements describe the coupling between real and imaginary parts, when
the cavity is detuned. If the cavity is on resonance, the real and imaginary parts are
completely decoupled6. In Fig.3.24, Bode-plots of a detuned and tuned cavity are shown.
The transfermatrix describes only one passband mode. For a short discussion of the

6Interestingly, life is also complex. It has real and imaginary parts, where both have to be taken into
account when considering the value of life.
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stability of the rf control system, one need to consider all passband modes. Assuming
the gain is G=1, no latency in the feedback loop and adding the other passband modes,
Fig.3.25 was derived. A phaseshift of 180 degrees at each resonance frequency comes from
the coupling relations of the modes, since each fundamental mode from the passband
has an electric field with opposite sign in the end cell (Fig. 2.17). The Nyquist-stability-
criterion tells us, that if the amplitude at such a phase shift is higher than 0 dB, the
system gets instable. The 1

9π- to 7
9π-mode will not need to be considered, since they are

filtered out through the small bandwidth of the cavity and the small bandwidth of the
klystron. But the 8

9π-mode needs to be considered. The loop delay can have influence,
whether the 8

9π-mode will see positive or negative feedback [38], [37]. A relation between
controller stability and loop-delay exists, which shows periodic structure. Until now,
we were only discussing time continuous systems. If we switch to a digital controlled
system, we should apply the z-transformation and not Laplace-transformation. This also
leads to some artifacts, such as higher amplitudes due to aliasing in the system. The
transfermatrix, which needs to be considered, is the product of the transfer matrices
along the controller path. When taking these new assumptions into account, a stability
map can be plotted for the feedback loop delay (Fig. 3.27). The sampling itself can also
lead to a filtering. This is the reason why an upgrade to a sampling frequency of 54 MHz
is planned at FLASH and the installation of a digital notchfilter in the feedback loop to
get rid of any unwanted signal of the 8

9π-mode. This would increase the field stability
inside the cavity, since any sidebands limit the gain at FLASH, which should be as high
as possible to suppress uncorrelated, random noise such as microphonics.
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3.3 Cavity behavior

Figure 3.24: a) H11, cavity on resonance. b) detuned H11. c) detuned H21. Only in
a detuned cavity, H21 is non-zero. Bandwidth is 215 Hz for both plots,
detuning by 100 Hz.

57
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Figure 3.25: All passband modes, G=1, no loop delay. Nyquist-stability-criterion tells
us, that if the amplitude at a certain frequency is higher than 0 dB at
a phase shift of 180 degrees, the system can become unstable. This plot
shows, that this could happen if we do not control the 8

9π-mode.

58



3.3 Cavity behavior

Figure 3.26: Left: no loop delay, right: delay is 2π. Strong oscillations on the Am-
plitude can be seen, which is the influence of the 8

9π-mode. Therefore,
considering loop-delay when planning your digital control is necessary.
(see Fig. 3.27)

Figure 3.27: Stability chart for a single cavity. Simulation of a digital control loop.
fs =1 MHz, βπ- and β 8

9
π-mode, fπ − f 8

9
π = 800 kHz [37].
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3.4 Driving multiple cavities with a single klystron

For the ILC, the Design Gradient is 31.5 MV/m. But for economical and industrial
reasons, we will have a gradient spread within a single accelerator module7. This means
different quenching limits inside a module. Since three modules at FLASH and ILC
will be driven by a single klystron, we have to find a solution to maximize the vector
sum along these modules without quenching single cavities. But besides a maximum
vector sum without quenching we also want a flat vector sum during beam duration to
have equal acceleration for each bunch. This is the problem, when controlling the vector
sum instead of single cavities. We have to replace the single cavity voltage with the
vector sum voltage in our ODE (3.32) and we will not consider individual properties
and limits. This problem will be considered in this section and was under experimental
investigation during the 9 mA Run at FLASH. The maximum operating gradients of
the cavities before quenching in the modules are shown in Fig. 3.28 and the rf power
distribution along the modules ACC 4, ACC 5 and ACC 6 in Fig. 3.29. If we decreased

Figure 3.28: This picture shows the gradient spread at FLASH before the upgrade.

the driving power and matched the weakest cavity inside the module to avoid cavity
quenches, which looks like the easiest solution, we run into several problems [6]. First,
by decreasing the power we also decrease the gradient of every cavity. But this will
increase the QL of the other cavities. A higher QL need more driving power to reach
cavity equilibrium in the same time than to a lower QL. Fig. 3.30 depicts this situation.
And even if we run the module with a higher klystron power, one still has problems.

7An accelerator module consists of 8 cavities with fixed power ratios. Usual nomenclature is ACC X
where the X stands for the specific number of the module in the accelerator chain.
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3.4 Driving multiple cavities with a single klystron

Figure 3.29: The accelerating modules 4,5,6 are fed by a single, two armed klystron.
The distribution of the RF power is shown here.

An individual QL for each cavity implies that each cavity will have an individual time
constant leading to individual filling and decay times (Fig. 3.31). This complicates the
synchronization between beam injection time and the phase of the vector sum. A flat
top will only be reached if the beam compensates the klystron power. If no beam is
present, an increase in QL will lead to an increase of the cavity voltage slope. This will
lead to a cavity quench in absence of the beam or if the beam is not matched (Fig. 3.32).
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3 Control theory applied to superconducting cavities

Figure 3.30: Lowering the gradient of a cavity by more than 15%, more klystron power
is needed to drive this cavity [5].

Figure 3.31: Adjusting individual QL, no quench in the presence of the beam will
happen but different time constants will occur [5].
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3.4 Driving multiple cavities with a single klystron

Figure 3.32: Without beam, a change in QL leads to different slopes during flattop so
that certain cavities will quench during flattop [5].

The questions, which will be under investigation, are

1. How do we reach flattop for the vector sum without and with beam even if there
is a gradient spread for multiple cavities?

2. How can we assure, that no cavity will quench and have a maximum vector sum?

3. If a cavity will quench, how can we detect this during acceleration?

The following assumptions will be used throughout the discussion:

• Q0 ≈ 2 · 1010 (FLASH configuration)

• QL ≈ 3 · 106 (FLASH configuration)

• Eacc,max = 31.5 MV/m (ILC Design gradient)

• Ibeam = 9 mA - if present (ILC Design current)
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3.4.1 Without Beam

Starting with the cavity ODE (3.32) and solving it with the assumptions above, we
obtain for a single cavity

Vcav(t) = 2RLIg
(

1− e−
t
τ

)
− 2RLIb

(
1− e−

t−t0
τ

)
(3.36)

where t0 is the beginning of the flattop which is also the arriving of the beam in the
cavity (next section). To have flattop without beam, the driving power is reduced to
make sure that the cavity field strength will not increase. The criterion for the flattop is
found by setting the derivative of the cavity voltage with respect to the time equal zero.
With no beam we obtain

dVcav
dt

= 0 (3.37)

⇔ e
t0
τ − 2 = 0 (3.38)

⇔ t0 = τ ln(2). (3.39)

You can assure that each cavity will have flattop when the beam enters the cavity or by
decreasing the driving power, when the filling time is chosen that it fulfills the relation
(3.39). With the equation τ = 2QL

ω0
, the filling time can be controlled by adjusting the

QL. For multiple cavities we sum up the accelerating fields to the vector sum and the
flattop gradient which will be reached is calculated to

Vs =
1
N

∑
i

Vc,i =
RL
N

∑
i

Ic,i =
RLIg
N

∑
i

αi

where the αi is a coefficient which describes the ratio of the generator current that is
distributed to the i-th cavity. These coefficients can be controlled with fixed or variable
attenuators or tap-offs. These coefficients are crucial later on when we want to derive a
method to prevent cavities from quenching.
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3.4 Driving multiple cavities with a single klystron

3.4.2 With Beam

Now we want a criterion for flattop with beam. With beam, the vector sum of several
cavities looks like:

VS(t) = 2RL
(

1− e−
t
τ

) 1
N

∑
i

Ic,i − 2RLIb
(

1− e−
t−t0
τ

)
if we are only interested in the absolute value of the complex accelerating gradient.
Again, taking the derivative and considering only the time when beam is present in the
cavity, t > t0, we get the condition for flattop

2RL
1
τ
e−

t
τ

1
N

∑
i

Ic,i = 2RLIb
1
τ
e−

t−t0
τ (3.40)

⇔ 1
N

∑
i

Ic,i = 2Ib. (3.41)

This is the matching condition to assure that when the beam passes through the cavity,
the beam current is compensated by increasing the cavity surface current in such a
way that the accelerating field will stay constant over the time and will not increase or
decrease. This condition can be rewritten to

1
N

∑
i

αi = 1.

This criterion will be used to find the maximum vector sum. By now we addressed only
the first of the three questions. By adjusting the QL of each cavity to be the same,
every cavity has the same time constant. This means that the equilibrium for each
cavity will be reached when the beam enters the cavity, and if the current matching
condition is fulfilled, we will have flattop during beam. Now we need to guarantee that
no cavity will quench during beam loading and still having a high accelerating gradient.
We have not thought about the different quenching limits, but we have a possibility
to introduce these problems in our calculations without any change necessary at the
derived conditions. The key will be the current distribution coefficients αi. Starting
with considering three cases which are shown in Fig. 3.33. We see, that we have to
check the gradients at two times:

• at the beginning of the pulse t0, the injection time, for cavities with αi < 1

V max
c,i = Vc,i(t = t0)
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Figure 3.33: First Case: Generator current is too low to match beam load. Second
Case: Generator current is too high to match beam load. Third Case:
Generator current fits beam load [5].
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3.4 Driving multiple cavities with a single klystron

• at the end of the rf pulse, at t1 for cavities with αi > 1

V max
c,i = Vc,i(t = t1)

We introduce the abbreviation β = e
TFT
τ where TFT is the duration of the flattop8. When

using the equation for the vector sum voltage with beam and inserting the relevant times,
we get the solutions

• Vc,i(t0) = 2RLIbαi

• Vc,i(t1) = 2RLIb
(
αi

(
2− 1

β

)
−
(

1− 1
β

))
Keeping in mind that some cavities will quench below, others above the vector sum
gradient we look at two cases (Fig. 3.34)

Figure 3.34: Individual cavity quenching limit below or above vector sum gradient [5].

• 2RLIbαi < Vq,i with quenching limit below vector sum Vq,i < VS

• 2RLIb
(
αi

(
2− 1

β

)
−
(

1− 1
β

))
< Vq,i with quenching limit above vector sum Vq,i > VS

This means, that the critical vector sum gradient will be reached, when cavities with a
maximal operating gradient below the vector sum will quench exactly at t0 and those
cavities with a maximal operating gradient above the vector sum will quench at t1 (Fig.
3.35).

8This β has nothing to do with the coupling constant β.
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3 Control theory applied to superconducting cavities

Figure 3.35: The critical vector sum gradient: cavities operating below VS quench
exactly at t0; cavities operating above VS quench at t1 [5].

These criterion can be restated and will lead to useful boundary conditions of the
current distribution coefficients

αi <
Vql,i

2RLIb
= α−i (3.42)

αi <

(
Vql,i

2RLIb
+
(

1− 1
β

))
β

2β − 1
= α+

i (3.43)

Where the minus sign is for quenching below the vector sum and the plus for quenching
above. These coefficients are plotted in Fig. 3.36. Now we need to remember that the
averaged αi need to be equal to unity to obtain flattop during beam. Choose

αlimi = min
{
α−i , α

+
i

}
(see Fig. 3.36) and define

ᾱ =
1
N

∑
i

αlimi

then we define our individual current distribution coefficients to

αi =
αlimi
ᾱ

and the criterion that the averaged sum αi needs to be equal to unity will always be
satisfied as long as ᾱ ≤ 1. This is the vital point. Since

ᾱ =
1
N

∑
i

αlimi =
1
N

∑
i

min
{
α−i , α

+
i

}
∝ 1
RL
∝ 1
QL

a QL exist, for which ᾱ becomes smaller than unity.
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3.4 Driving multiple cavities with a single klystron

Figure 3.36: Plot of the values calculated for the current distribution parameters with
the derived formulas. Blue dotted line is αmini [5].

With finding the QL where ᾱ becomes equal to unity you find the maximum vector
sum with which you can drive a module, since we have the relation

V FT
S = 2RLIb = 2R

QL
Q0

Ib

This problem can only be treated numerically and with given assumptions above, Fig.
3.37 was derived. This quench prevention model, which is implemented in MATLAB as
a cavity Simulator, was tested during the 9 mA run, to validate it and to help predict
future problems and make an easier and faster tuning of a machine possible. With these
methods, we answered also the second question, how to prevent a cavity from quenching.
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3 Control theory applied to superconducting cavities

Figure 3.37: By using the MATLAB cavity Simulator, you can solve this problem
numerically and derive the maximum vector sum for a given gradient
spread [5].
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3.4 Driving multiple cavities with a single klystron

3.4.3 Quench detection

Several reasons can lead to the quench of a cavity (Fig. 2.5), even problems with the
cryo system or with heating of the input coupler. Now the question is, how to detect
a quench. Two methods will be discussed. Exception handling, e.g. what to do if the
quench is detected, is not the topic of this section. First we need to see the characteristics
of a quench in the rf signals (see Fig. 3.8). The first method, which is used up to now,

Figure 3.38: This plot shows the time development of a quench. In (a) the transmitted
power is shown and in (c) the reflected power. (b) shows the driving signal
and (d) the QL against the pulse number (cavity no. 2 at ACC6) pulse
one is shown in red, the second in black and the third in blue [33].

is to detect a quench by fitting the decay time of the transmitted power at the end of
the rf pulse. Since quenching means loosing the superconducting state, the QL will drop
immediately and the cavity time constant will decrease. The accelerating field will decay
faster, which can be measured. The disadvantage is, that the quench will be detected
only at the end of the rf pulse and problems like instabilities in the cryosystem and an
increased energy spread or even beam loss will occur. A second method, allowing intra
pulse detection, could be possible when using the cavity ODE (Eqn.3.32). By solving the
ODE for QL, and with every needed value provided via DAQ, real time quench detection
could be possible. Even the beam current can be included when the toroid signals are
scaled and used for calculation. This method is under development and only offline DAQ
analysis is possible yet, since no FPGA code exist. The question under investigation is,
if the second method is stable, fast and accurate to replace the existing method.
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4 Implementation of LLRF control at
FLASH

In general there are two possibilities to drive a cavity. The so called GDR (generator
driven) mode and the self excited loop (SEL) mode. In the GDR mode (Fig. 4.1), the

Figure 4.1: Sketch of GDR Model.

master oscillator gets controlled in amplitude and phase and is amplified by a klystron
or a solid state amplifier and this signal is used to drive the cavity. A pick up antenna
measures the field in the cavity and a phase and amplitude detector is used to derive an
error signal in comparison with the setpoint. This error signal is used as input signal
for the feedback control. The advantage of the GDR system is given, when fast lock
up times are critical, i.e. pulsed systems and it is easily adaptable to I/Q domain for
digital control. Disadvantages are, that the system needs tuning elements to keep the
cavity close to the reference frequency. And machines with high QL and microphonic
distributions and large Lorentz force detuning could become unstable and loose resonance
lock. In the SEL mode (Fig. 4.2) the probe signal is bounded in amplitude by a limiter.
Apart from that, the probe signal is directly fed back to the klystron, so that the
accelerating field inside the cavity will start from noise if the loop phase is a multiple
of 2π. This means that random noise gets amplified by the feedback if the noise is near
the resonance frequency. The cavity frequency still must be locked close to the reference
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frequency to avoid saturating the power amplifier. The advantage lies in operating high
QL cavities and systems with Lorentz force detuning, since they follow any change in
frequency and phase. The disadvantage is the slow lock up time. Basically, if the system

Figure 4.2: Sketch of SEL Mode.

is locked, these methods are equivalent. Digital SEL can follow a system only in a certain
range which is limited by the digital filter. And the SEL must handle a spinning phasor
when the system is not locked. This means, that the state vector rotates with an ωt
term until the feedback locks the system onto the correct frequency and phase which
is not the case for a GDR system. After choosing which mode will be used one has to
derive an rf system model and derive the state space representation. This representation
is discretized and implemented into the controller algorithm.
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4 Implementation of LLRF control at FLASH

4.1 Requirements at FLASH

The LLRF control needs to maintain the accelerating field, e.g. amplitude and phase,
within given tolerances for several cavities. As an example the next sections will show
the LLRF control for the first accelerator module in the FLASH chain (ACC1), which
is an accelerator module containing 8 cavities. The requirements which need to be met
are [16]

•
(

∆E
E

)
Beam

< 2.7 · 10−4 =⇒
(

∆AVS
AVS

)
≤ ±10% and

(
∆φVS
φVS

)
≤ ±1o

• Lorentz force compensation, since LF detunes a cavity by ≈ 215 Hz

• Beam loading compensation, since IB = 8 mA induces an amplitude drop of(
∆A
A

)
= 1.4 · 10−3

• Drive multiple cavities with a single klystron: Not to exceed single cavity limits
(quench)

• Reach maximal beam energy, which means reach maximal vector sum

• With new accelerator module ACC39, 3rd higher harmonic needs to be controlled

• finite state machine, describing the accelerator for complex procedures (e.g. turn
on klystron)

The plant which needs to be controlled at FLASH is shown in Fig. 4.3.

4.2 Feedback

4.2.1 Principle layout of LLRF control

When designing the LLRF control system, you have to identify all available attenuators
and actuators and pick up signals. The time constant τc of a superconducting cavity at
FLASH is about 700 µs which is much longer than the sampling interval Ts = 1 µs. This
allows a good system modeling which leads to a good ’fast noise’ suppression. The latency
of the feedback loop is about 4 µs, which is the sum of transport- (600 ns), calculation-
(2 − 3 µs) and conversion delays ( ADC 500 ns, DAC 200 ns) and an additional loop
phase shift of approximately 100 degrees. A fast amplitude and phase control of multiple
cavities needs to control three incident waves for each cavity. This applies 24 signals for
a single accelerator module. To realize such a control system, the modulation of these
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4.2 Feedback

Figure 4.3: Principle layout of the closed loop system which needs to be controlled [29].

waves is chosen to be I/Q modulation, introduced in the chapter before. The sampled
signals need to be scaled and rotated by a 2x2 matrix and the vector sum is calculated.
In parallel, the transmitted power is analyzed to identify the transient beam loading
for compensating the beam loading effects and also to derive the correct tables for the
feedforward control system which is used to compensate the Lorentz force detuning and
other repetitive, slowly changing errors. The signals are split up a third time and fed
to the DAQ system1. Individual graphs can be plotted and saved for offline analysis,
trouble shooting and manually operated exception handling. In Fig.4.4, the layout of
the system is shown. The respective functional block diagram of the controller loop
is shown in Fig.4.5. The control block and the algebraic model (derived in chapter
3) which is implemented as sketched in Fig.4.6. This algorithm uses the state-space
representation derived in chapter 3. The algorithm runs in the FPGA, while signal
conversion, summation, rotation and scaling is done in the DSPs. The algebraic model
is used to derive the needed signals to steer a cavity to the desired state. This model
runs simultaneously inside the FPGA to identify the cavity state and to predict its
further development. It consist of successive steps, done for each cavity. The set point is
compared with the actual state and error signals and feedforward tables are applied to
the driving signal. The driving signal uk is the forward power, the cavity phasor vk the
transmitted power of the k-th cavity. The transmitted power vk is calibrated, rotated
and scaled, the vector sum is calculated and compared to the set point value.

1At DESY,the DAQ and Controlsystem for the accelerators is DOOCS (Distributed Object Oriented
Control System). It was developed on site and is under continous enhancement.
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4 Implementation of LLRF control at FLASH

Figure 4.4: Layout of the LLRF Control of the ACC1 module at FLASH [30].

Figure 4.5: Functional block diagram of the LLRF control system for one cavity [31].

76



4.2 Feedback

Figure 4.6: Algebraic model of the feedback and feedforward system [31].

The error value is fed into the correction matrix and the result, the feedback phasor,
is added up with the feedforward phasor. This results in xk, where this signal is the
driving signal for the klystron, which itself generates the forward power uk. More detailed
descriptions can be found in [3], [11], [14], [16], [29], [30], [31].

4.2.2 Open loop, no beam operation

Some results of the work at ACC1, described in the section above, are shown here. The
work has been carried out at at FLASH [14]. During the next cases, following parameters
where held constant. The filling time with 500 µs. After that time, forward power was
dropped to keep a nearly steady state value of the cavity. The flattop had a duration
of about 800 µs. After 1.3 ms the rf power was turned off. In Fig. 4.7 the result in
driving ACC1 without feedback, so called open loop operation, is shown. The upper
plots include the amplitude and phase the individual cavities. The lower plot shows the
vector sum of the cavities. Even though the vector sum shows a negligible slope, it can
be seen that constant individual gradients are not necessary to reach a flat vector sum.
The phase drift is due to detuning through Lorentz force.
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4 Implementation of LLRF control at FLASH

Figure 4.7: Open loop, no beam operation of ACC1. Even with no flat gradient for
individual cavities a flat vector sum of the cavities can be achieved [14].

4.2.3 Closed loop, no beam

For closed loop operation, the gain of the I- and Q-component needs to be set. In this
case, the gain was set to 30, the accelerating voltage for the whole module was set to
115 MV. The plots in Fig. 4.8. show the results of this operation. The RMS during the
flattop for the vector sum is(

∆V
V

)
RMS

= 0.2%; ∆φrms = 0.25◦

This time each cavity has a constant gradient during flattop. The vector sum of the
cavities acts like a single cavity, driven by one klystron.
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4.2 Feedback

Figure 4.8: With closed feedback loop a higher vector sum gradient can be achieved,
the cavity detuning is compensated and the gradients of individual cavities
will not drift [14].

4.2.4 Closed loop, with beam

The acceleration of a beam current of 6mA, pulse length of 30 µs was tested at ACC1.
Feedforward has been applied to the controller to reduce Lorentz force detuning. The
RMS is calculated for the whole flattop. The stabilities achieved were:

• with feedback (gain = 70), without feedforward:(
∆V
V

)
RMS

= 5 · 10−3;
(

∆φ
φ

)
RMS

= 0.1◦

• with feedback (gain = 70), with feedforward:(
∆V
V

)
RMS

= 5 · 10−4;
(

∆φ
φ

)
RMS

= 0.03◦

When comparing the results achieved with the feedback system turned on, to the re-
quirements in Section 4.1. concerning field and phase stability, the goal was reached
within a single module. The idea to use this feedback system to drive a single cavity
with a high QL is described in the next chapter.
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5 Implementation of LLRF control at the
vertical test stand

The vertical test stand at DESY is used to determine QL as a function of the accelerating
gradient Eacc. This method gives us the possibility for several applications. The main
goal is to test the cavity if it is capable to run an accelerator at high gradients. This
includes a research of an optimized cavity treatment, like quality assurance of important
steps in cavity surface treatment or the assembly of special parts to the cavity. A test
is done between each step to assure the quality of the cavity and to understand the
different procedures and their influence onto the cavity and understand the mechanisms
happening inside the cavity (Fig. 5.1). Another point is the possibility to improve the

Figure 5.1: This plot sketches different types of Q-E-Plots and what informations we
can derive about the mechanisms inside a cavity [18].

cavity parameters while testing when the cavity shows field emissions. This procedure is
called processing. When reaching a certain rf power which leads to strong field emissions
you stay at this power level to try to burst the impurity. This method is not always
successful. Another possibility, introduced through this work, is the possibility to test
several hardware / firmware components at the vertical test stand.
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The LLRF control used at FLASH is capable to run several cavities. To show that this
control system can run the vertical test stand, this work has been done. Even that it
may look obvious that this should be possible some problems need to be solved. For
example, exact and absolute values are needed to get good results while at FLASH,
subsystems carry out some of these tasks and the LLRF control is working on error
signal and relative values. Besides this, a higher QL increases the requirements onto the
control algorithm speed. The layout of the construction can be seen in Fig. 5.2.

Figure 5.2: Engineering drawing of the vertical test stand at DESY [43].
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5 Implementation of LLRF control at the vertical test stand

5.1 Analog test stand

The frequency generator creates an rf signal, which is chopped to a pulsed signal via
a pin diode, which itself is driven by a function generator (see Fig. 5.3). This pulsed
driving signal is amplified by a solid state amplifier and is then fed to the cavity. Between
amplifier and cavity a circulator exists to protect the amplifier against the reflected wave.
Directional couplers pick up the forward and reflected waves to measure their power level
and the signals are used to drive the Phase-Locked-Loop (PLL), to make sure that the
system stays on resonance. Inside the PLL, the Phase of the forward and the transmitted
Power is compared and the error signal is used to drive a phase shifter which shifts the
driving signal phase.

Figure 5.3: Layout of the signal path at the current testing system [43].

To derive the Q-E-Graph, one has to measure forward, reflected and transmitted Power.
Once, this is done, following formulas are needed 1.

Q0 = (1 + β) ·QL (5.1)
QL = 2π · ω0,n · τ (5.2)

τ is calculated as an exponential fit to the decaying part of the transmitted power while
the resonance frequency is read out of a spectrum analyzer.

1see equation 2.54. βt can be neglected since we are using a nearly loss free antenna.
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5.1 Analog test stand

The coupling β is determined through the reflected Power. Depending on the duration
of the rf driving signal, different formulas has been derived to calculate the coupling
β [43]:

• β = Pe
Pi−Pr for pulsed mode

• β =
1−
√

Pr
Pf

1+

√
Pr
Pf

used when cavity reached steady state

• β = 1

2

√
Pf
Pe
−1

measuring when rf is turned off

The definitions of thePx can be taken from Fig. 5.4. The calculation of the coupling
is a vital point. Any errors arise during sampling the reflected power will have a large
influence onto the Q0 calculation. To derive the accelerating gradient Eacc following
equation is used 2

Eacc =

√(
r
Q

)
·Q0 · Pdiss

n · l
(5.3)

Where n denotes the number of cells the cavity consist of and l the length of a single
cell.

(
r
Q

)
is the shunt impedance. The dissipated power can be calculated through

Pdiss =
4β

1 + β
· Pf − Pr − Pt (5.4)

when the cavity is in equilibrium, which means, the cavity is filled and flatop is achieved.

Figure 5.4: Relevant points of the reflected Power.

2see equation 2.24 with the electric field distribution of the TESLA cavity.
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5 Implementation of LLRF control at the vertical test stand

5.2 Digital test stand

5.2.1 Principle signal path

In Figure 5.5, a schematic view of the digital system is given. The frequency generator
creates a 1.3 GHz sine signal near to the resonance frequency of the mode. This signal
goes to the rf box (see next section). From the rf box a 1.3 GHz sine signal is fed to
a vector modulator. In the vector modulator, this signal is split up into two signals
which are phase delayed to each other by 90 degrees. Each is modulated by the feedback
I/Q-signal from the DAC of the SimCon board in a mixer of the vector modulator. At
the output of the vector modulator, these two signals are added up, amplified and then
fed to the cavity. The forward and reflected power is coupled out and the transmitted
power is picked up and fed to the SimCon Board. The ADCs can not handle the
resonance frequency of about 1.3 GHz, so that we need to downconvert the signal to
the intermediate frequency (IF) of 9 MHz. The IF is then fed to the ADC and sampled
with a frequency of 4 times the IF, respectively 81 MHz which is delivered from the rf
box. Inside the controller board, the control algorithm is applied. Both modes, GDR
and SEL were under investigation.

Figure 5.5: Layout of the digital testing system.
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5.2 Digital test stand

In principle, the signals have the same path like in the analog system. A driving signal
is generated and fed to the cavity. The transmitted and driving signal are sampled and
used to lock on, where the error signal is used to correct the driving signal. The only
difference is in the controller algorithm. The analog system is fixed to the GDR mode
while the digital system can switch between GDR and SEL and it is under investigation
which is better to use.

5.2.2 Controller board and algorithm

The main part of the system is the SimCon-Board (Simulator and Controller Board),
which has been developed at DESY. This board, a picture is given in Fig. 5.6, is also
the controller board for the accelerator modules at FLASH. Different versions of this
board exist and the latest one, the SimCon DSP, is used at the vertical test stand. The
main challenge in controlling the test stand is the high QL, which can be about 104

higher than in an accelerator since the input-antenna attached at the test stand are high
quality-factor antennas. This leads to a narrow resonance peak the system needs to lock
on. Hence a faster feedback algorithm has to be developed. How this feedback algorithm
is implemented depends on the mode the cavity is driven on, GDR or SEL. A similar
approach has been done before at the horizontal test stand at DESY. The difference to
the vertical test stand is that fully equipped cavities are tested under working conditions
and the input and HOM couplers lowers QL to the nominal values of the accelerator [15].

Figure 5.6: Picture of the used SimCon Board (courtesy of S. Simrock).

The SimCon Board consists of 8 14bit-ADCs and 8 16bit DACs, a Xilinx Virtex IV
FPGA-Processor and a Tiger Shark DSP. It has also two optical ethernet connections
and a VME interface for communicating and programming the board. The DSP is used
at FLASH to calculate the vector sum and do the needed rotations and scaling while the
FPGA is used for the controller algorithm. A more detailed description can be found
in [14]. The characteristic curves of the hardware, e.g. calibration of the ADC, can be
seen in Section 8.5, e.g. Fig.8.5.2-8.5.4.

85



5 Implementation of LLRF control at the vertical test stand

They show a nonlinear behavior during the measurement at about 50% of their range.
These nonlinearities will be considered later on. The ADCs are sensitive to a voltage of
the range -1V to +1V. The ADC measures the voltage and not the power and will also
be discussed later. This is an important feature since changing cables between the ADCs
and the directional couplers will lead to a change in resistance and a new calibration
need to be done. Another problem is that the range from -1V to +1 V is a small window
to realize a full measurement of a cavity up to 50 MV/m which can mean a driving power
of 200 W. The controller algorithm needs to handle a sampling frequency, which is also
the internal clock, of 81 MHz. Due to conversion and calculation delay, the algorithm
needed 31 clock cycles before an output is generated. The newest version, working as
an SEL mode, needs 7 clock cycles and a tuning accuracy of about ∆f = 0.5 Hz. This
faster and more accurate algorithm used to drive high quality factor oscillating circuit
together with a newer controller board can improve the stability of an accelerator and
the possibility of a higher QL in the machine.

5.2.3 RF box

The frequencies, needed to drive the system are generated by an rf box (Fig. 5.7) which
has been developed for this purpose. There is a fixed relation of the frequencies to each
other.

IF = f0 − fDWC = f0 −
(
f0 +

f0

144

)
fS =

f0

16
=⇒ fS = 9 · IF

With IF as intermediate frequency, f0 as resonance frequency of the mode under in-
vestigation, fDWC as the frequency used for down-conversion and fS as the sampling
frequency. These relations assure that no aliasing will occur since we fulfill the Nyquist-
criterion. Besides this, the IQ-Sampling relation is also realized. The rf box guarantees
synchronized frequencies with fixed phases to each other.
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5.2 Digital test stand

Figure 5.7: Technical drawing of the rf box used for generating the required frequencies.
A picture of the hardware is shown in the section 8.5.

5.2.4 GUI and communication

The communication of the graphical interface with the SimCon Board, respectively the
FPGA, is done via MATLAB and an internal interface server (Fig. 5.8). The algo-
rithms, which control the registries of the FPGA, the frequency generator, the box and
other parts of the system and the communication are shown in Appendix 1. Basically,
the communication between MATLAB and the FPGA is done via *.mex-files or MAT-
LAB executable files. They can be written in C/C++ or directly in MATLAB and are
compiled onto the operating system on which MATLAB will be used. A more detailed
description of the communication and the different layers can be found in [27], [26]. The
principle of the communication is shown in Fig. 5.8. In Fig. 5.9 the recent graphical
user interface is shown. This is the latest version of the developer environment but need
to be changed when it should be operated by non experts. The automated measurement
will make some of the shown panels and steering possibilities redundant.
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5 Implementation of LLRF control at the vertical test stand

Figure 5.8: Drawing of the communication of MATLAB with the FPGA via TCP/IP
and/or VME Bus [26].
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5.2 Digital test stand

Figure 5.9: Latest version of the graphical user interface developed in MATLAB. The
GUI is used to control the generator, spectrum analyzer and the FPGA
and to monitor every needed value of the test stand. It is also used to plot
every needed graph and calculates the needed and searched parameters
(MATLAB Code in Section 8.1).
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5 Implementation of LLRF control at the vertical test stand

5.2.5 Results of the digital test stand

In Fig. 5.10 and 5.11 two measurements done with the digital system in comparison
with the analog system is given. In Fig. 5.10 an earlier version of the measurement

Figure 5.10: Cavity Z109. Left: Q-E-plot derived with the digital system. Right:
Q-E-plot derived with the analog system.

Figure 5.11: Cavity Z138 with HOM couplers. Left: Q-E-plot derived with the digital
system. Right: Q-E-plot derived with the analog system.

algorithm is shown. Besides the fact that the y-scale, respectively the Q0, has been
changed, since it is favorable not to take the logarithmic scale at too low input power,
an error calculation has been added which gives rise to a more accurate interpretation
of the results (Fig. 5.11).
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5.2 Digital test stand

The general behavior of the cavity, respectively the Q-E-plot, could be reproduced by
the digital system, but is still not in agreement with the absolute values of the analog
systems. But an intrinsic error of about 10% of the analog system can be added due to
limitations in the resolution of the powermeter. These plots proof the feasibility of the
concept, driving a vertical test stand and a high QL cavity with a digital control. An
automated measurement has been realized. The algorithm finds for each data point the
correct phase of the driving signal within 248 seconds and this is reproducible without
any external control. Some improvements have been done to make this phase sweep
even faster but could not be tested up till now. The automated measurement takes
1113 seconds for finding the correct phase, evaluates and monitors every needed signal
for 4 points. For a single point 286 seconds are needed. This makes it possible for an
estimation of the time needed for a cavity measurement. The so called processing is still
not analyzed and completely structured. Further investigations towards this are needed
to see if an algorithm can be developed which mirrors the decision tree while treating
a cavity this way. The automated search for the resonance modes of a cavity is not
implemented in MATLAB but the algorithm is working correctly, which has been shown
with LabView. When taken the error of about 10 % in the quality factor of the analog
system into account and with the error of the digital system shown in Fig.5.11 the plots
show an agreement.

5.2.6 Problems

Some Problems are still unsolved. Some because they were not completely understood,
some just because the lack of time. As mentioned above, the forward power can only
go up to several Watts, since the ADCs reach saturation too fast. This results in a
limitation of the accelerating gradient, respectively the x-axis. The reason for this is,
that at low signal levels, noise coming from the controller algorithm, the PLL or even
thermal noise can lead to errors and thus it is not easy to reproduce the analog system
results. The digital system is sensitive in a low power regime which will not be the
problem at high power levels beyond several Watts. For example, one of the biggest
problem is the calculation of β. In Fig. 5.12 the signal of the reflected power is shown.
The oscillations seen there lead to an error of about 30% of the coupling. FFT analysis
of the signal has been done (see Section 8.6) which has shown some sidebands at the
higher harmonics of the rf box to down-converter signal. After low pass filters were
installed we expected the oscillations to disappear. Unfortunately, the noise could still
be seen. A more precise analysis of the data showed, that the oscillations are the result
of two signals interfering with the 9MHz IF, which are at IF + 16 Hz and IF + 72 Hz.
This small deviation is the reason, why they can not be seen in the FFT. The source
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5 Implementation of LLRF control at the vertical test stand

Figure 5.12: Oscillations in the reflected power lead to a huge error in the coupling
(see Fig. 5.4).

of the noise is not found yet. Some tests showed that there are differences of the noise
signal level and frequency in the forward and reflected Power during and after the pulse.
That hint leads us to a possible source. The noise can be produced by non-linearities
in the mixers of the down-converters, since they generate higher harmonics which can
have a significant influence at input powers beyond the linear regime of the analog
parts in the controller chain, respectively the down-converters and the ADCs. These
higher harmonics are aliased either to DC respectively the Nyquist frequency (even
higher harmonics) or the IF frequency (odd higher harmonics). A typical symptom
of this error source is, that the distortion changes when carrier frequency and phase
changes. This is the case, as mentioned, when the rf is turned off and the system
looses the lock to the resonance frequency and phase and the driving signal frequency
and phase is sampled. The odd higher harmonics mapped to the IF signal can not be
distinguished from the carrier frequency by standard IQ sampling resulting in false data
measurement. By applying non-IQ-sampling to the signal, we should verify the noise
source as non-linearities within the system. Non-IQ-sampling means, that the ratio of
sampling frequency to intermediate frequency is not an integer but rational [36] [45].
By changing to Non-IQ-sampling an improvement of the system accuracy should be
possible. Another problem already mentioned is the limited power range, coming from
the ADC limitation. One solution could be installing fixed attenuators to keep the signal
level in the linear area and stay away from saturation. But this solution will increase
the resolution and is only useful if the signal level can be estimated, which is in fact not
known until the cavity has been measured. Another solution is to split up and connect
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one signal to several ADCs with different attenuators in front and switch between the
ADCs for different power ranges. This can be done but would need an ADC-Board for
this setup. This would lead to a delay time and will result in a high latency which
could be a problem for high QL - cavities. A favorable solution is the installation of
digitally controlled attenuators. They will change the attenuation in dependence of the
input signal level and thus will keep the signal in the linear regime of the ADC. The
attenuation needs to be taken into account when calculating absolute values but this
is no problem since they can be controlled and monitored via the MATLAB GUI. The
calibration of the ADCs can be automated if the powermeters will be kept in the system
and are read out via VISA/GPIB. A script to generate pulses, read out the ADCs and
the power level at the powermeters exists.

5.2.7 Possible further developments

Besides these tasks which still need to be done, some general improvements can be done.
The mode used to run the digital test stand during the feasibility study is the GDR
mode. By implementing the SEL mode a faster measurement is possible since the phase
sweep is not needed. A newest FPGA code was tested using SEL and showed some
nice features. But due to hardware problems and time limitations no results can be
shown. Another big improvement would be a completly new algorithm to derive the QL.
This could be done by using the quench detection method derived above when using the
cavity ODE. An example is shown in Fig.5.13. The advantage is, that QL can be derived
without knowing the coupling and eliminate an error source. Also QL can be derived
much faster, since the cavity does not need to reach equilibrium. Further investigations
towards a combined use of SEL and quenchdetection-algorithm should be done. Fig.5.13
shows a fast convergence towards a constant, stable value of QL. This means, no use to
wait for a flattop, which means a complete saturated cavity, to measure the decay time
and calculate the QL. Well calibrated ADCs or fast powermeter can be used to realize
this method.
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Figure 5.13: The quench detection algorithm used at the vertical test stand.
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6 9 mA - run at FLASH

6.1 General interest and goals

The 9 mA run at FLASH investigates some key questions towards XFEL and ILC. First,
the accelerator modules 4, 5 and 6 are driven by a single klystron. To understand and
improve the control of this system is vital since similar schemes are suggested for future
linacs. And a stable gradient of the superconducting cavities with high beam loading
need to be achieved. The pulse will consist of 2400 bunches with 3 nC per bunch in a
flattop duration of 800 µs, which means a bunch repetition rate of 3 MHz. The beam
power should be about 1 GeV and the cavities will be driven close to their quenching
limits. The lesson we can learn for XFEL is how to realize such an intense electron beam
with a high repetition rate and have maximum flexibility to meet user requirements. This
is not easy to achieve since we are working with different currents and bunch repetition
rates during the 9 mA run. For ILC, high luminosity, through small beam emittance,
high bunch repetition rate and high electron densities, with reliable and stable LLRF
is crucial. This meets the key concept in superconducting cavities, that their huge
advantage is the acceleration of long bunch trains, as outlined in the introduction.

Figure 6.1: Comparison of XFEL, ILC, FLASH and FLASH 9 mA.

The 9 mA run is carried out at FLASH, since by now it is the only machine which can
provide the needed experimental and hardware setup. FLASH is an electron linac with
design values close of the ILC (Fig. 6.1).
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User requirements lead to a change over the years in these values during user operation
and this lead to some changes in hardware and controlling. Nevertheless, DESY is a
perfect environment for the ILC community, since it will construct and operate XFEL
and is also a strong contributor to the TESLA-Collaboration. In section 6.2.1 I will
show some results about the stability of the accelerating field along a single module and
along FLASH together with a validation of the method to prevent quenches, derived in
section 3.4.2. In section 6.2.2. I will concentrate on the method of quench detection as
sketched in section 3.4.3.

6.2 Data analysis - Sep. 09 run

6.2.1 Gradient disparities

At ACC456 various hardware is used to steer the driving signal and the QL. At ACC
4 and 5 motorized 3-stub-tuners are used while at ACC 6 motorized input couplers
(antennas) and phase shifters are the steering elements. Experience has shown, that the
solution of ACC 6 can reach the desired state faster since changing the stub positions for
a single cavity at ACC4 and 5 has influence onto the phase and QL of the other cavities.
In Fig. 6.2. all settings at the modules 5 and 6 are given.

Figure 6.2: RF distribution of Klystron 4 for ACC5 and ACC 6.
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All cavities have been set to a QL of 3·106 to ensure, that the cavities have the same filling
time and the individual powers have been adjusted in such a way, that the cavities are
operating below their quenching limit. The simulations carried out are used to derive
the best power distribution with and without beam in such a way that the highest
accelerating gradient for the vector sum is reached. If the SASE-settings for FLASH in
normal operating mode would be used, the cavities would have quenched, which made
the changes necessary. In Fig.6.3 and 6.4 a real time analysis by Brian Chase and in Fig.
6.5 and offline DAQ analysis by myself are shown. Fig. 6.3 shows the behaviour of the

Figure 6.3: Left: Simulation of the cavity behavior with given parameters from the
model. Right: real-time LLRF data from 9 mA - no beam run (ACC 6).
The fact, that two cavities in the left plot show a positive tilt and not
on the right is due to detuning, which was compensated by a resonance
frequency shift [9].

cavities in ACC6 without beam. This was the first step in validating the model. Fig.
6.4 shows a direct comparison of real FLASH data with the simulated cavity behavior
(21. Sep ’09 - 2:50 am). The simulation describes the individual cavities with the ODE
derived above with the parameters derived with the method sketched in Section 3.4.2.
The beam current was 9 mA, klystron power was reduced for safe operation. The impact
of detuning at the end of the pulse should be studied further. The different impacts which
occure when we improve from an average vector sum of 20 MV/m to 31.5 MV/m need
to be investigated.
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Figure 6.4: Comparison of simulation and FLASH data for rf distribution to reach
high VS and no quench with beam [34].

Figure 6.5: a) ACC5 - DAQ data from the 9 mA run. b) is a simulation of the cavity
behavior with given parameters from the model - no beam run.
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The offline DAQ data used to repeat this study showed some deviations to the real
time comparison. The average vector sum during the 9 mA run (19. Sep ’09 - 22:30)
I consider is 15.4 MV/m with a RMS of 0.28 MV/m in comparison with the simulated
vector sum of 16.22 MV/m. The deviations could occur due to a different sampling
resolution and frequency for real time and DAQ data. The MATLAB Simulator used
for the real time analysis was fine tuned during the run to meet the measured data and
has some improvements compared to the Simulator I used. Basically, the model was
validated and can be used for further predictions of possible quenching of single cavities
and a better tuning of the machine. Higher vector sum gradients needs to be achieved
and compared with the model to improve the algorithm. After the discussion of the field
gradients of a single pulse, we will now come to the long time stability of the modules.
Fig. 6.6 shows the vector sum and the RMS of each module and of FLASH for 422
pulses, each pulse with 9 mA. The deviations from the mean value for ACC 456 is shown
in Fig. 6.7. A peak to peak field stability of only 1% was achieved during this run while
the RMS is in the range of 0.1%.

Figure 6.6: Vector sum for all modules plotted against 422 pulses each with 9 mA.

The peak to peak deviation could be explained with microphonics and beam current
variations but needs to be investigated further. The vector sum deviation over several
hours is shown in Fig. 6.8. The outlined trips were due to klystron problems. The change
after ≈ 2.5 h is due to a longer bunch train which leads to a higher beam loading.
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6 9 mA - run at FLASH

Figure 6.7: Vector sum deviation for module 456 plotted against 422 pulses each with
9 mA. The slope is due to a phase drift in the machine.

Figure 6.8: Vector sum deviation over longer period of the 9 mA run (each point: 3
mA, 800µs bunch trains) [7].

100



6.2 Data analysis - Sep. 09 run

The correlation of the beam loading effect to the vector sum gradient is shown in Fig.
6.9.

Figure 6.9: Correlation of the beam current to the accelerating gradient. Different
working points of the machine correspond with the different linear relation
[32].
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6.2.2 Quench detection

The quench detection up to now is done via MATLAB scripts, reading out the DAQ
and measuring the decay time at the end of the driving pulse. In Fig. 6.10 some results
of this method are shown. It works reliable and stable and with an RMS up to 0.2%. A
quench is detected when QL drops significantly below the design value of 3 · 106. But
the algorithm works too slow, which means that a cavity can quench during the pulse.
This causes the cryogenic system to react to a high dissipative energy and the pulse
could be lost or at least will have a huge intrinsic energy spread. If the dissipated energy
is too high, the cryogenic system can become unstable. A longer procedure to recover
superconductivity is needed and the whole module needs to be taken out of the power
supply chain. This decreases the final beam energy or one has to increase the gradient of
the other modules. Exception handling will not be considered and we will focus now on
quench detection. The method using the cavity ODE as described in section 3.4.3 can
be done in realtime. In Fig. 6.11 a single event of cavity 2 in ACC 6 has been treatend.

Figure 6.10: In both rows, the red dotted line is always the first graph as reference.
The lower row shows the QL calculation after rf is turned (t = 0 is the
point where the rf is turned off after 400µs). A single point in the lower
row is a fit of 20µs duration. The dropping of the QL by a factor 3 during
a quench can be seen [33].
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6.2 Data analysis - Sep. 09 run

Figure 6.11: a) forward power, b) signal at the pick up antenna. c) detuning and d)
QL during flattop.
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Even that QL is noisy, an RMS up to 1% can be achieved and the feasibilty of the
algorithm is shown. The huge peaks in QL at ≈ 200 ms and 420 ms correlate with the
detuning, which still influences the calculation. After 420 ms flattop, a peak to peak de-
viation of 3 ·106 is still to large too identify a quench during flattop. Since this resolution
is worse than that of the actual system and can not show a significant drop there is no
real benefit. A reason for the noise in the QL is the quantization error which is amplified
due to the division of the sampling time. The sampling noise can be improved when using
higher resolution ADC’s, but this is connected to a loss in sampling speed. An upgrade
to a sampling frequency from 250 kHz to 54 MHz is planned and could bring significant
improvements. Another error source is the calibration of the forward power used here,
which is needed to subtract crosstalk in the downconverters. The method is described
in [3] and has been developed in [39]. The quench detection method is quite sensitive to
the calibration and other calibration methods are under development since the derived
crosstalk parameters have large errors. The quench detection method shown here should
be studied again when the planned upgrades are done and the calibration procedures
are improved and automated. Furthermore, an implementation into an FPGA should be
considered to proof the real time capability of this algorithm. Nevertheless, this method
shows some nice features and can be studied and used at the vertical test stand.
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7 Summary & Outlook

The topic of the diploma thesis are studies to optimize the accelerating gradient of super-
conducting cavities for the ILC. One part of the thesis took care of the optimization of
the vertical test stand to control and assure high gradients during the cavity preparation
and assembling. The other part was about obtaining high gradients during operation in
the presence of high beam loading and multiple cavity control. A summary of these two
parts will be given.

7.1 Discussion of the digital vertical test stand

The feasibility of the digital control system was shown. Furthermore, some plots could
be derived and the system is well understood by now. Still, some problems need to
be solved, which are more of technical nature than principle problems. The validation
of the results and a measurement up to 31.5 MV/m still needs to be done. Principle
changes like implementing the SEL mode and using the quench detection algorithm
should improve the digital test stand to an easier and faster measurement device than
the analog test stand. The digital test stand can be used as a sandbox for controller
algorithms, since the environment is the same like in a controller. Lessons, relying on
algorithm speed concerning the small cavity bandwith, have been learned and an SEL
is the mode of choice when dealing with this. The higher sampling rate, and thus a
higher data flow, of 81 MHz comparing to the 1 MHz at FLASH needed to be handled
which could help at the planned upgrade at FLASH to a sampling rate of 54 MHz. The
development of the rf box is also done and it behaves as it should and can be used for
the test stand or at any other set up, where two or three phase stable, synchronized
frequencies are used.
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7.2 Discussion of the 9 mA run

The goal of the 9 mA run was long bunch trains with a current of 9 mA and a beam
energy RMS of 0.1%. Resulting from the fact that a two week shutdown for major
upgrades and hardware changes to carry out the run, were done before, normal start up
problems arise and shortend the up time of the accelerator. The former goal to recover
the results of the last run took much longer than planned due to different interlock trips
and tuning procedures needed. This lead to the fact, that only minor goals could be
considered. But nevertheless 2400 bunches, each with merely 3 nC and a repetition rate
of 3 MHz, was achieved during the nearly last shift (see Fig. 7.1). But the demonstration

Figure 7.1: Main goal achieved: 2400 Bunche at 3 MHz, each 3nC. [7]

of the field stability up to 0.1%, operation close the the quenching limits, integrating
the 3.9 GHz module and several other goals could not be achieved and need to be done
in future studies carried out. The 9 mA run is an important accelerator study for the
accelerator community since it addressed many challenging machine problems dealing
with intense beam, high gradients, stable beam energy and high repetition rates. This
is needed for future linear colliders and FELs no matter what the design will be.
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8 Appendix

8.1 sweeptest2.m

function varargout = sweeptest2(varargin)
% Designed to control digital System at Vertical Teststand II
% Delevoped by:
% Marc Wenskat @ DESY ; University of Goettingen
% Needs special files located in folder.
% See dependency report -> ’Tools’
% -> ’Save and show dependency report’
% tcpip and ii * *.mexsol for communication with GPIB-Devices, DOOCS-Server

% or with FPGA and several m-script
% (uni daq.m,uni daq once.m,uni gen.m,sweep function.m).
%
% Edit the above text to modify the response to help sweeptest2
% Last Modified by GUIDE v2.5 12-Aug-2009 15:26:26
% Begin initialization code - DO NOT EDIT
gui Singleton = 1;
gui State = struct(’gui Name’, mfilename, ...
’gui Singleton’, gui Singleton, ...
’gui OpeningFcn’, @sweeptest2 OpeningFcn, ...
’gui OutputFcn’, @sweeptest2 OutputFcn, ...
’gui LayoutFcn’, [] , ...
’gui Callback’, []);
if nargin && ischar(varargin{1})

gui State.gui Callback = str2func(varargin{1});
end
if nargout

[varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});
else

gui mainfcn(gui State, varargin{:});
end
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function sweeptest2 OpeningFcn(hObject, eventdata, handles, varargin)
% Choose default command line output for sweeptest2

handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
t=timer(’TimerFcn’,{@read Callback,handles},’Period’,2.0,’TasksToExecute’,Inf,...
’ExecutionMode’,’fixedRate’);
start(t);
set(handles.AW1,’String’,0);
set(handles.ps1,’String’,0);
set(handles.eacc,’String’,0);
set(handles.qzero,’String’,0);
set(handles.beta,’String’,0);
set(handles.tau,’String’,0);
set(handles.resonancefrequency,’String’,0);
set(handles.ptop,’String’,0);
set(handles.clockfreq,’String’,0);
set(hObject,’toolbar’,’figure’);
set(handles.dpf,’String’,0);
set(handles.dpt,’String’,0);
set(handles.dpr,’String’,0);
set(handles.dloop,’String’,0);
set(handles.dcable,’String’,0);
set(handles.ctemp,’String’,0);
set(handles.feldem,’String’,0);
setappdata(0 , ’dpr’ , 0);
setappdata(0 , ’dpt’ , 0);
setappdata(0 , ’dpf’ , 0);
setappdata(0 , ’phase’ , 0);
setappdata(0 ,’dhom1’ , 0);
setappdata(0 ,’dhom2’ , 0);
quenchtable=zeros(9,9);
setappdata(0,’quenchtable’,quenchtable);
function varargout = sweeptest2 OutputFcn(hObject, eventdata, handles)

varargout{1} = handles.output;
function unigen Callback(hObject, eventdata, handles)
a1=str2double(get(handles.AW1,’String’));
if (a1>0) %&& a1<3
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a12=a1;%3680.3465+2498.168*log(a1-0.28722); %[W] to IQ
else a12=0;
end
ptop=str2double(get(handles.ptop,’String’));
adcfreq=str2double(get(handles.clockfreq,’String’));
p length=str2double(get(handles.ps1,’String’));
div = double(ii get word(’WORD TIMING FREQ STR’)) ;
time base = 1/(div/(adcfreq*1e6))/512 ;
clk counts = floor(ptop*adcfreq*1e6/9)*9+8 ;
ff i = [ 0 a12 0] ;
ff q = [ 0 0 0]*0000 ;
gp i = [ 0 0 0]*0 ;
prog = [1 p length*time base 2^18-1] ;
gp q = [ 0 -1 0]*256 ;
mode = [0 1 0 0 0];
ii set word(’WORD TIMING FREQ TRG’,uint32(clk counts));
ii set area(’AREA FF I’,uint32(0),uint32(length(ff i)),uint32(ff i)) ;
ii set area(’AREA FF Q’,uint32(0),uint32(length(ff q)),uint32(ff q)) ;
ii set area(’AREA GP I’,uint32(0),uint32(length(gp i)),uint32(gp i)) ;
ii set area(’AREA GP Q’,uint32(0),uint32(length(gp q)),uint32(U22Dec(gp q,18))) ;
ii set area(’AREA PROG’,uint32(0),uint32(length(prog)),uint32(prog)) ;
ii set area(’AREA MODE’,uint32(0),uint32(length(mode)),uint32(mode)) ;
function AW1 Callback(hObject, eventdata, handles)
function AW1 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function ps1 Callback(hObject, eventdata, handles)
function ps1 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function resetpuls Callback(hObject, eventdata, handles)
ff i = [ 0 0 0 ]*10000 ;
ff q = [ 0 0 0 ]*0000 ;
gp i = [ 0 0 0 ]*0 ;
prog = [0 0 0 2^18-1] ;
ii set area(’AREA FF I’,uint32(0),uint32(length(ff i)),uint32(ff i)) ;
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ii set area(’AREA FF Q’,uint32(0),uint32(length(ff q)),uint32(ff q)) ;
ii set area(’AREA GP I’,uint32(0),uint32(length(gp i)),uint32(gp i)) ;
ii set area(’AREA GP Q’,uint32(0),uint32(length(gp i)),uint32(gp i)) ;
ii set area(’AREA PROG’,uint32(0),uint32(length(prog)),uint32(prog)) ;
function quit Callback(hObject, eventdata, handles)
rmappdata(0,’cavity’);
rmappdata(0,’dpf’);
rmappdata(0,’dpr’);
rmappdata(0,’dpt’);
rmappdata(0 , ’phase’);
rmappdata(0 ,’dhom1’);
rmappdata(0 ,’dhom2’);
delete(handles.figure1)
function ctemp Callback(hObject, eventdata, handles)
function ctemp CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function hef Callback(hObject, eventdata, handles)
function hef CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function flow Callback(hObject, eventdata, handles)
function flow CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function vcav Callback(hObject, eventdata, handles)
function vcav CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function read Callback(hObject, eventdata, handles)
[data2,err]=ttfr(’TTF.KRYO/TTFKEITHLEY1/1023/VALUE’); % Fullstand
if (data2<80),

set(handles.hef,’BackgroundColor’,’red’);
else set(handles.hef,’BackgroundColor’,’white’);
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end
data2=num2str(data2,’%4.2f’);
set(handles.hef,’String’,data2);
[data,err]=ttfr(’TTF.KRYO/CALC/V 2.TEMPERATURE/CALC’); % Cavity Temp
data=num2str(data,’%4.2f’);
set(handles.ctemp,’String’,data);
[data3,err]=ttfr(’TTF.KRYO/CALCULATOR/V 2.FLOW/CALC’); % Flow
if (data3>9),

set(handles.flow,’BackgroundColor’,’red’);
else set(handles.flow,’BackgroundColor’,’white’);
end
data3=num2str(data3,’%3.2f’);
set(handles.flow,’String’,data3);
[data4,err]=ttfr(’TTF.VAC/PENNING/V 2.8/P’); % Vacuum in Cavity
if (data4>10^-6),

set(handles.vcav,’BackgroundColor’,’red’);
else set(handles.vcav,’BackgroundColor’,’white’);
end
data4=num2str(data4,’%3.2e’);
set(handles.vcav,’String’,data4);
[data,err]=ttfr(’TTF.RF/UNIDOS/V2/X RAY’); % Feldemission
data=num2str(data,’%2.1e’);
set(handles.feldem,’String’,data);
function resonancefrequency Callback(hObject, eventdata, handles)
function resonancefrequency CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function beta Callback(hObject, eventdata, handles)
function beta CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function tau Callback(hObject, eventdata, handles)
function tau CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
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function sliderValue editText Callback(hObject, eventdata, handles)
sliderValue = get(handles.sliderValue editText,’String’);
sliderValue = str2num(sliderValue);
if (isempty(sliderValue) —— sliderValue < -180 —— sliderValue > 180)

set(handles.slider,’Value’,0);
set(handles.slider editText,’String’,0);

else
set(handles.slider,’Value’,sliderValue);

end
function sliderValue editText CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function slider Callback(hObject, eventdata, handles)
sliderValue = get(handles.slider,’Value’);
set(handles.sliderValue editText,’String’, num2str(sliderValue));
guidata(hObject, handles);
function slider CreateFcn(hObject, eventdata, handles)
if isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,[.9 .9 .9]);
end
function setmat Callback(hObject, eventdata, handles)
angle=str2num(get(handles.sliderValue editText,’String’));
I = 1*cos(angle*2*pi/360)*65535 ;
Q = 1*sin(angle*2*pi/360)*65535 ;
ii set area(’WORD ROT RE’,uint32(0),uint32(1),uint32(U22Dec(I,18))) ;
ii set area(’WORD ROT IM’,uint32(0),uint32(1),uint32(U22Dec(Q,18))) ;
function ptop Callback(hObject, eventdata, handles)
function ptop CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function savedata Callback(hObject, eventdata, handles)
ptop=str2double(get(handles.ptop,’String’));
pause(ptop)
a= uni daq([0 1 2 8 9 10],1);
pt=abs(complex(a(:,1),a(:,4)));
pr = abs(complex(a(:,2),a(:,5)));
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pf = abs(complex(a(:,3),a(:,6)));
d=datestr(now,’mmddHHMM’);
savefile1=strcat(’pt’,d,’.m’);
savefile2=strcat(’pr’,d,’.m’);
savefile3=strcat(’pf’,d,’.m’);
save(savefile1,’pt’,’-ascii’,’-tabs’) ;
save(savefile2,’pr’,’-ascii’,’-tabs’) ;
save(savefile3,’pf’,’-ascii’,’-tabs’) ;
function eacc Callback(hObject, eventdata, handles)
function eacc CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function qzero Callback(hObject, eventdata, handles)
function qzero CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function measure Callback(hObject, eventdata, handles)
ptop=str2double(get(handles.ptop,’String’));
fid=tcpip open(’ttfvert2.desy.de’,5555);
s=’0;10;0;:CALC:MARK:MAX \’;
tcpip write(fid,s);
tcpip close(fid);
fid=tcpip open(’ttfvert2.desy.de’,5555);
p=’0;10;1;:CALC:MARK:X? \’;
tcpip write(fid,p);
pause(0.1);
datax=tcpip readln(fid,50);
tcpip close(fid);
set(handles.xvalue,’String’,datax);
pause(ptop)
a= uni daq([0 1 2 8 9 10],1);
ptadc = abs(complex(a(:,1),a(:,4)));
pradc = abs(complex(a(:,2),a(:,5)));
pfadc = abs(complex(a(:,3),a(:,6)));
%pf=exp(1.73257e-9.*pfadc.^2+3.66329e-5.*pfadc-2.12135);
%pr=exp(-9.24249e-7.*pradc.^2+0.00399.*pradc-7.54021);
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%pt=exp(8.70431e-9.*ptadc.^2-2.57523e-4.*ptadc-4.71769);
dpt=getappdata(0,’dpt’);
dpr=getappdata(0,’dpr’);
dpf=getappdata(0,’dpf’);
pt=ptadc+dpt;
pr=pradc+dpr;
pf=pfadc+dpf;
daqtime=str2double(get(handles.daqtime,’String’));
daqoffset=str2double(get(handles.daqoffset,’String’));
datapoints=double(ii get word(’WORD DAQ LIMIT’));
deltat=daqtime/(datapoints-1);
pulselength=str2double(get(handles.ps1,’String’));
n=round((pulselength/3-daqoffset)/deltat); %obere Grenze erster Peak bei pr
mo=round((pulselength+1-daqoffset)/deltat); %obere Grenze zweiter Peak bei pr
o=round((pulselength-daqoffset)/deltat - 100); %untere Grenze zweiter Peak bei pr
q=round((2*pulselength/3-daqoffset)/deltat); %beginn des Flat tops bei pt
r=round((pulselength-daqoffset)/deltat - 100); %ende des flat tops bei pt
v=round((2*pulselength/3-daqoffset)/deltat); %beginn des flattops bei pr
w=round((pulselength-daqoffset)/deltat - 100); %ende des flattops bei pr
u=floor((pulselength-daqoffset)/deltat ) ; %beginn decay fuer tau
ptt=mean(pt(q:r));
deltaptt=std(ptt);
ptexp=mean(pt(u-10:u+10))/exp(1);
stoptau=round((pulselength+pulselength/3)/deltat);
[rte,index]=min(abs(pt(u:stoptau)-ptexp));
d=index+u-1; %ende decay fuer tau
indexx=d-u+1;
p1=max(pr(1:n)); %erster peak pr
pe=max(pr(o:mo)); %zweiter peak pr
prt=mean(pr(v:w)); %flattop pr
errorprt=std(pr(v:w));
pft=mean(pf(v:w));
errorpft=std(pf(v:w));
x(1:indexx)=log(pt(u:d)); %zweiter peak, bestimmen von tau
beta2=pe/(p1-prt) ; % bei cw
beta3=1/((1-sqrt(prt/pft))/(1+sqrt(prt/pft)));
deltabeta2=(pe/(p1-prt)^2)*errorprt;
deltabeta3=sqrt(((sqrt(prt/pft)+1)/(2*pft*sqrt(prt/pft)*(1-sqrt(prt/pft))^2)+
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1/(2*pft*sqrt(prt/pft)*(1-sqrt(prt/pft))))^2*errorprt^2+((prt*(1+sqrt(prt/pft)))/(2*pft^2*sqrt(prt/pft)
*(1-sqrt(prt/pft))^2)-prt/(2*pft^2*sqrt(prt/pft)*(1-sqrt(prt/pft))))^2*errorpft^2);
vecbeta=[beta2 beta3];
beta=mean(vecbeta);
deltabeta=sqrt((deltabeta2/2)^2+(deltabeta3/2)^2);
topt=(length(x)-1)*deltat;
t=[0:deltat:topt];
[p,S]=polyfit(t,x,1);
m=p(1);
R=S.R;
d2=(R’*R)\eye(1+1);
d2=diag(d2);
MSE=(S.normr^2)/S.df;
se=sqrt(MSE*d2);
deltam=se(1);
tau=-1/m;
deltatau=deltam/m^2;
resfreq=str2double(get(handles.xvalue,’String’));
qload=2*pi*resfreq*tau;
deltaqload=2*pi*resfreq*deltatau;
mpf=mean(pf);
deltampf=std(mpf);
pd=(4*beta/(1+beta)^2)*mpf-prt-ptt;
deltapd=sqrt(deltaptt^2+((mpf*16*(beta-1)^2)/(beta+1)^6)^
2*deltabeta^2+((16*beta^2)/(beta+1)^4)^2*deltampf^2);
q0=qload*(1+beta);
deltaqo=sqrt(deltaqload^2*(1+beta)^2+deltabeta^2*qload^2);
n=get(handles.nrcells,’String’);
l=0.1154;
Eacc=sqrt(1030*q0*pd)/(n*l);
deltaeacc=0.5*sqrt(1030)*sqrt((pd^2*deltaqo^2+q0^2*deltapd^2)/(q0*1.035^2*pd)) ;
set(handles.deltaqload,’String’,num2str(deltaqload,’%5.3e’));
set(handles.deltaqzero,’String’,num2str(deltaqo,’%5.3e’));
set(handles.deltaeacc,’String’,num2str(deltaeacc/1e6));
set(handles.deltatau,’String’,num2str(deltatau));
set(handles.resonancefrequency,’String’,num2str(resfreq/1e6));
set(handles.qload,’String’,num2str(qload,’%5.3e’));
set(handles.qzero,’String’,num2str(q0,’%5.3e’));

116



8.1 sweeptest2.m

set(handles.eacc,’String’,num2str(Eacc/1e6));
set(handles.beta,’String’,num2str(beta));
set(handles.tau,’String’,num2str(tau));
set(handles.betadelta,’String’,deltabeta);
%% QPS wird ab hier getestet!!!
z pt=a(:,1)+a(:,4)*j;
z pf=a(:,3)+a(:,6)*j;
pfphase=(phase(complex(a(:,3),a(:,6)))*(180/pi));
ptphase=(phase(complex(a(:,1),a(:,4)))*(180/pi));
pt=abs(complex(a(:,1),a(:,4)));
pf=abs(complex(a(:,3),a(:,6)));
omega 0=1.3e9;
f sample=(str2double(get(handles.clockfreq,’String’)));
daqtime=str2double(get(handles.daqtime,’String’));
delta=daqtime/2047;
t=0:delta:daqtime;
%% Ableitung bestimmen und averaging Window anwenden
dt=1/(f sample*1e6);
dv(1:2047)=(pt(2:2048)-pt(1:2047));
dphiprobe=(ptphase(2:2048)-ptphase(1:2047));
dvdt=dv/dt;
dphiprobedt=dphiprobe;
meandvdt=slidingavg(dvdt,16);
%% Detuning berechnen
for i=1:2047

detuning(i)=(1/(2*pi))*(dphiprobedt(i)-(1.3e9/3e6)*sin(pfphase(i)-ptphase(i))*...
(abs(pf(i))/abs(pt(i))));

end
%% DGL nach loaded Q aufloesen/berechnen/plotten
for i=1:2047

z loaded Q(i)=-0.5*(omega 0*(2*z pf(i)-z pt(i)))/(z pt(i)*detuning(i)*j-meandvdt(i));
end
loaded Q=abs(z loaded Q);
testqpsplot=figure+1;
subplot(2,3,1)
plot(t,pf)
title(’forward Power’)
xlabel(’time [s]’);
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ylabel(’Gradient ’)
subplot(2,3,2)
plot(t,pt)
title(’transmitted Power’)
xlabel(’time [s]’);
ylabel(’Gradient ’)
subplot(2,3,3)
plot(t(1:2047),meandvdt’)
title(’dV c/dt - Sliding Average’)
xlabel(’time [s]’);
subplot(2,3,4)
plot(t(1:2047),slidingavg(detuning,10)’)
ylim([-100 100]);
title(’detuning ’)
xlabel(’time [s]’);
ylabel(’detuning [Hz]’)
subplot(2,3,5)
mittelwert=mean(loaded Q);
error=std(loaded Q);
error ql=error/mittelwert;
plot(t(1:2047),slidingavg(loaded Q,10))
Title=strcat(’loaded Q ’,’mean Value: ’,num2str(mittelwert,’%0.3g’),’ rms is : ’,num2str(error ql),’%’);
title(Title)
ylabel(’loaded Q’);
xlabel(’time [s]’);
function plotAxes2 pushbutton Callback(hObject, eventdata, handles)
ii set bits(’BIT DAQ ONCE’,uint32(1))
ptop=str2double(get(handles.ptop,’String’));
axes(handles.axes2);
pr=uni daq([1 9],1);
pradc=abs(complex(pr(:,1),pr(:,2)));
daqtime=str2double(get(handles.daqtime,’String’));
delta=daqtime/2047;
t=0:delta:daqtime;
dpr=getappdata(0,’dpr’);
pr=exp(-9.24249e-7.*pradc.^2+0.00399.*pradc-7.54021);
pr=pr+dpr;
plot(t,pradc,’r’) %pr
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title(’reflected Power’);
xlabel(’t [s]’);
ylabel(’Power [W]’)
ii set bits(’BIT DAQ ONCE’,uint32(0))
guidata(hObject, handles);
function plotAxes3 pushbutton Callback(hObject, eventdata, handles)
ptop=str2double(get(handles.ptop,’String’));
pause(ptop)
axes(handles.axes3);
pf = uni daq([2 10],1) ;
pfadc =abs(complex(pf(:,1),pf(:,2)));
daqtime=str2double(get(handles.daqtime,’String’));
delta=daqtime/2047;
t=0:delta:daqtime;
dpf=getappdata(0,’dpf’);
pf=exp(1.73257e-9.*pfadc.^2+3.66329e-5.*pfadc-2.12135);
pf=pf+dpf;
plot(t,pfadc,’g’)
title(’forward Power’);
xlabel(’t [s]’);
ylabel(’Power [W]’)
guidata(hObject, handles);
function plotAxes1 pushbutton Callback(hObject, eventdata, handles)
ii set bits(’BIT DAQ ONCE’,uint32(1))
ptop=str2double(get(handles.ptop,’String’));
a= uni daq([0 1 2 8 9 10],1);
ptadc = abs(complex(a(:,1),a(:,4)));
pradc = abs(complex(a(:,2),a(:,5)));
pfadc = abs(complex(a(:,3),a(:,6)));
daqtime=str2double(get(handles.daqtime,’String’));
delta=daqtime/2047;
t=0:delta:daqtime;
delta=daqtime/2047;
axes(handles.axes1);
plot(t,ptadc);
title(’transmitted Power’);
xlabel(’t [s]’);
ylabel(’Power’);
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axes(handles.axes3);
plot(t,pfadc,’g’) ;
title(’forward Power’);
xlabel(’t [s]’);
ylabel(’Power [W]’);
axes(handles.axes2);
plot(t,pradc,’r’) ;
title(’reflected Power’);
xlabel(’t [s]’);
ylabel(’Power [W]’) ;
ii set bits(’BIT DAQ ONCE’,uint32(0))
function clockfreq Callback(hObject, eventdata, handles)
function clockfreq CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function daqtime Callback(hObject, eventdata, handles)
function daqtime CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function daqoffset Callback(hObject, eventdata, handles)
function daqoffset CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function feldem Callback(hObject, eventdata, handles)
function feldem CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function betadelta Callback(hObject, eventdata, handles)
function betadelta CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function dpr Callback(hObject, eventdata, handles)
function dpr CreateFcn(hObject, eventdata, handles)
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if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))
set(hObject,’BackgroundColor’,’white’);

end
function dpf Callback(hObject, eventdata, handles)
function dpf CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function dpt Callback(hObject, eventdata, handles)
function dpt CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function dloop Callback(hObject, eventdata, handles)
function dloop CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function dcable Callback(hObject, eventdata, handles)
function dcable CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function dodamping Callback(hObject, eventdata, handles)
dforward=str2double(get(handles.dpf,’String’));
dreflected=str2double(get(handles.dpr,’String’));
dtransmitted=str2double(get(handles.dpt,’String’));
dloop=str2double(get(handles.dloop,’String’));
dcable=str2double(get(handles.dcable,’String’));
dloopr=(dcable-dloop)/2;
ddforwardr=20-dforward-dcable-0.61;
ddreflectedr=20-dreflected-dcable-0.61;
ddtransmittedr=20-dtransmitted-dcable-dloopr-0.61;
%fpf=str2double(get(handles.fpf,’String’));
%fpr=str2double(get(handles.fpr,’String’));
%fpt=str2double(get(handles.fpt,’String’));
k=get(handles.homyesno,’Value’);
if k==1

121



8 Appendix

dhom1=str2double(get(handles.hom1damping,’String’));
dhom2=str2double(get(handles.hom2damping,’String’));
ddhom1=20-dhom1-dcable-0.61;
ddhom2=20-dhom2-dcable-dloopr-0.61;
dhom 1=(10^(ddhom1/10))*10^(-3); % Unit is [W]
dhom 2=(10^(ddhom2/10))*10^(-3); % Unit is [W]
setappdata(0,’dhom1’,dhom 1);
setappdata(0,’dhom1’,dhom 2);

end
if ddforwardr==0 %&& fpf ==0

dpf=0;
else dpf=(10^(ddforwardr/10))*10^(-3)%+10^(fpf/10); % Unit is [W]
end
if ddreflectedr==0 %&& fpr ==0

dpr=0;
else dpr=(10^(ddreflectedr/10))*10^(-3)%+10^(fpr/10); % Unit is [W]
end
if ddtransmittedr==0 %&& fpt ==0

dpt=0;
else dpt=(10^(ddtransmittedr/10))*10^(-3)%+10^(fpt/10); % Unit is [W]
end
setappdata(0,’dpf’,dpf);
setappdata(0,’dpr’,dpr);
setappdata(0,’dpt’,dpt);
function fpr Callback(hObject, eventdata, handles)
function fpr CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function fpf Callback(hObject, eventdata, handles)
function fpf CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function fpt Callback(hObject, eventdata, handles)
function fpt CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
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end
function setdaq Callback(hObject, eventdata, handles)
adcfreq=str2double(get(handles.clockfreq,’String’)); %DAQ-Timing
div = double(ii get word(’WORD TIMING FREQ STR’)) ;
daqtime=str2double(get(handles.daqtime,’String’));
daqoffset=str2double(get(handles.daqoffset,’String’));
datapoints=double(ii get word(’WORD DAQ LIMIT’));
daq freq=uint32(daqtime*adcfreq*1000000/div/datapoints);
daq offs=uint32(daqoffset*adcfreq*1000000/div/daq freq);
ii set word(’WORD DAQ FREQ’,daq freq) ;
ii set word(’WORD DAQ OFFSET’,daq offs) ;
function freq gen Callback(hObject, eventdata, handles)
function freq gen CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function amp gen Callback(hObject, eventdata, handles)
function amp gen CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function setfreqgen Callback(hObject, eventdata, handles)
fid=tcpip open(’ttfvert2.desy.de’,5555);
adresse=’0;1;0;’;
freq=get(handles.freq gen,’String’);
amp=get(handles.amp gen,’String’);
freqz=[’:FREQ’ ’ ’ freq];
ampz=[’;:POW:AMPL’ ’ ’ amp];
s=strcat(adresse,freqz, ’ MHz’, ampz ,’ dBm \ ’);
tcpip write(fid,s);
tcpip close(fid);
function rfon Callback(hObject, eventdata, handles)
fid=tcpip open(’ttfvert2.desy.de’,5555);
s=’0;1;0;:OUTP:STAT ON \’;
tcpip write(fid,s);
tcpip close(fid);
function rfoff Callback(hObject, eventdata, handles)
fid=tcpip open(’ttfvert2.desy.de’,5555);
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s=’0;1;0;:OUTP:STAT OFF \’;
tcpip write(fid,s);
tcpip close(fid);
function modefreq Callback(hObject, eventdata, handles)
function modefreq CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function calculate Callback(hObject, eventdata, handles)
f res=str2num(get(handles.modefreq,’String’));
ifreq = double(uint32(f res/144*10000))*100;
f1 = ifreq*9/1000000 ;
f2 = ifreq*144/1000000 ;
f3 = ifreq*143/1000000 ;
f1=num2str(f1,’%4.2f’);
f2=num2str(f2,’%8.4f’);
f3=num2str(f3,’%8.4f’);
set(handles.freq gen,’String’,f2);
set(handles.clockfreq,’String’,f1);
set(handles.convfreq,’String’,f3);
freq=get(handles.freq gen,’String’);
leftspan=str2double(freq)-0.5 ;
rightspan=str2double(freq)+0.5 ;
set(handles.leftspan,’String’,num2str(leftspan));
set(handles.rightspan,’String’,num2str(rightspan));
function adcfreq Callback(hObject, eventdata, handles)
function adcfreq CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function convfreq Callback(hObject, eventdata, handles)
function convfreq CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function setmarker Callback(hObject, eventdata, handles)
fid=tcpip open(’ttfvert2.desy.de’,5555);
s=’0;10;0;:CALC:MARK:MAX \’;
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tcpip write(fid,s);
tcpip close(fid);
function xvalue Callback(hObject, eventdata, handles)
function xvalue CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function yvalue Callback(hObject, eventdata, handles)
function yvalue CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function getmarker Callback(hObject, eventdata, handles)
fid=tcpip open(’ttfvert2.desy.de’,5555);
p=’0;10;1;:CALC:MARK:X? \’;
tcpip write(fid,p);
pause(0.1);
datax=tcpip readln(fid,50);
tcpip close(fid);
set(handles.xvalue,’String’,datax);
fid=tcpip open(’ttfvert2.desy.de’,5555);
q=’0;10;1;:CALC:MARK:Y? \’;
tcpip write(fid,q);
pause(0.1);
datay=tcpip readln(fid,1024);
set(handles.yvalue,’String’,datay);
tcpip close(fid);
function centerfreq Callback(hObject, eventdata, handles)
function centerfreq CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function leftspan Callback(hObject, eventdata, handles)
function leftspan CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function rightspan Callback(hObject, eventdata, handles)
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function rightspan CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function setcenter Callback(hObject, eventdata, handles)
fid=tcpip open(’ttfvert2.desy.de’,5555);
centfreq=get(handles.centerfreq,’String’);
centfreqz=[’:FREQ:CENT’ ’ ’ centfreq];
s=strcat(’0;10;0;’,centfreqz, ’ MHz \’);
tcpip write(fid,s);
tcpip close(fid);
function setspan Callback(hObject, eventdata, handles)
fid=tcpip open(’ttfvert2.desy.de’,5555);
leftspan=get(handles.leftspan,’String’);
rightspan=get(handles.rightspan,’String’);
leftspanz=[’:FREQ:STAR’ ’ ’ leftspan];
rightspanz=[’;:FREQ:STOP’ ’ ’ rightspan];
s=strcat(’0;10;0;’,leftspanz , ’ MHz’,rightspanz , ’ MHz \’);
tcpip write(fid,s);
tcpip close(fid);
function freqlimit Callback(hObject, eventdata, handles)
function freqlimit CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function setlimit Callback(hObject, eventdata, handles)
val = str2num(get(handles.freqlimit,’String’));
ii set word(’WORD FREQ LIMIT’,uint32(val));
function qload Callback(hObject, eventdata, handles)
function qload CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function homyesno Callback(hObject, eventdata, handles)
k=get(handles.homyesno,’Value’);
if k==1

set(handles.hom1damping,’BackgroundColor’,’white’);
set(handles.hom2damping,’BackgroundColor’,’white’);
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end
if k==0

set(handles.hom1damping,’BackgroundColor’,’black’);
set(handles.hom2damping,’BackgroundColor’,’black’);

end
function hom2damping Callback(hObject, eventdata, handles)
function hom2damping CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’grey’);
end
function hom1damping Callback(hObject, eventdata, handles)
function hom1damping CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’grey’);
end
function savemeasure Callback(hObject, eventdata, handles)
new1=zeros(1,9);
new=new1’;
new(1)=str2double(get(handles.beta,’String’));
new(2)=str2double(get(handles.tau,’String’));
new(3)=str2double(get(handles.qzero,’String’));
new(4)=str2double(get(handles.qload,’String’));
new(5)=str2double(get(handles.ctemp,’String’));
new(6)=str2double(get(handles.feldem,’String’));
new(7)=str2double(get(handles.resonancefrequency,’String’));
new(8)=str2double(get(handles.eacc,’String’));
new(9)=str2double(get(handles.AW1,’String’));
old=getappdata(0,’cavity’);
cavity=[old,new];
setappdata(0,’cavity’,cavity);
function xaxis Callback(hObject, eventdata, handles)
function xaxis CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function yaxis Callback(hObject, eventdata, handles)
function yaxis CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))
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set(hObject,’BackgroundColor’,’white’);
end
function plotdata Callback(hObject, eventdata, handles)
cavity=getappdata(0,’cavity’);
a=get(handles.xaxis,’Value’);
b=get(handles.yaxis,’Value’);
setappdata(0,’log’,0);
switch a
case 1

x=cavity(8,:);
namex=’Eacc [MV/m]’;

case 2
x=cavity(9,:);
namex=’forward Power [W]’;

case 3
x=cavity(1,:);
namex=’Coupling’;

case 4
x=cavity(2,:);
namex=’decay Time [sec]’;

case 5
x=cavity(4,:);
namex=’loaded Q’;

case 6
x=cavity(3,:);
namex=’unloaded Q’;

case 7
x=cavity(7,:);
namex=’resonance Frequency [Hz]’;

case 8
x=cavity(5,:);
namex=’Cavity Temperatur [K]’;

end
switch b
case 1

y=cavity(3,:);
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namey=’unloaded Q’;
log=2;
setappdata(0,’log’,2)

case 2
y=cavity(4,:);
namey=’loaded Q’;
log=2;
setappdata(0,’log’,2)

case 3
y=cavity(1,:);
namey=’Coupling’;
log=1;

case 4
y=cavity(2,:);
namey=’decay Time [sec]’;
log=1;

case 5
y=cavity(6,:);
namey=’Field Emission [mG/h]’;
log=1;

case 6
y=cavity(5,:);
namey=’Cavity Temperatur [K]’;
log=1;

case 7
y=cavity(9,:);
namey=’forward Power [W]’;
log=1;

end
switch log
case 2

figure(2);
semilogy(x,y,’o’,’MarkerFaceColor’,’b’,’MarkerSize’,7)
a=strcat(namey,’ vs. ’,namex);
title(a);
xlabel(namex);
ylabel(namey);
grid
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otherwise
figure(2);
plot(x,y,’o’,’MarkerFaceColor’,’b’,’MarkerSize’,7)
a=strcat(namey,’ vs. ’,namex);
title(a);
xlabel(namex);
ylabel(namey);
grid

end
function deltatau Callback(hObject, eventdata, handles)
function deltatau CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function deltaqload Callback(hObject, eventdata, handles)
function deltaqload CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function deltaqzero Callback(hObject, eventdata, handles)
function deltaqzero CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function deltaeacc Callback(hObject, eventdata, handles)
function deltaeacc CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function clockreset Callback(hObject, eventdata, handles)
ii set bits(’BIT EXT CLK ENA’,uint32(0))
ii set bits(’BIT DCM RST’,uint32(1))
ii set bits(’BIT DCM RST’,uint32(0))
ii set bits(’BIT EXT CLK ENA’,uint32(1))
function nrcells Callback(hObject, eventdata, handles)
function nrcells CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
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end
function cwmode Callback(hObject, eventdata, handles)
uni gen(81e6,0.1,0.09,10000,’cw vco’,1);
ii set word(’WORD DAQ FREQ’,uint32(64)) ;
function phasesweep Callback(hObject, eventdata, handles)
set(handles.daqtime,’String’,num2str(14));
set(handles.ptop,’String’,num2str(15));
set(handles.ps1,’String’,num2str(5));
adcfreq=(str2double(get(handles.clockfreq,’String’)));
uni gen(adcfreq*1e6,0.1,0.09,50000,’cw vco’,1);
ii set word(’WORD DAQ FREQ’,uint32(64));
pause(2) ;
[ phase char1 ] = sweep function2(-180:60:180,0.5);
uni loadrot(1,(phase-45))
pause(3)
[ phase char2 ] = sweep function( (phase-45):2:(phase+45),2) ;
uni loadrot(1,phase)
ii set word(’WORD DAQ FREQ’,uint32(2048));
uni loadrot(1,phase);
uni gen(adcfreq*1e6,4,2.5,50000,’sweep’,1);
pause(2) ;
counter = 1 ;
range = (phase-10):1:(phase+10) ;
amplitudes = zeros(length(range),1) ;
for I = range,

uni loadrot(1,I) ;
disp(I);
pause(0.5)
a = uni daq([1 9],1) ;
amplitudes(counter) = min(abs(complex(a(:,1),a(:,2)))) ;
counter = counter + 1 ;

end
[val, ind] = min(amplitudes) ;
uni loadrot(1,range(ind))
uni gen(adcfreq*1e6,15,5,100000,’sweep’,1)
set(handles.sliderValue editText,’String’,num2str(range(ind)));
div = double(ii get word(’WORD TIMING FREQ STR’)) ;
daqtime=str2double(get(handles.daqtime,’String’));
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daqoffset=str2double(get(handles.daqoffset,’String’));
datapoints=double(ii get word(’WORD DAQ LIMIT’));
daq freq=uint32(daqtime*adcfreq*1000000/div/datapoints);
daq offs=uint32(daqoffset*adcfreq*1000000/div/daq freq);
ii set word(’WORD DAQ FREQ’,daq freq) ;
ii set word(’WORD DAQ OFFSET’,daq offs) ;
function stebpf Callback(hObject, eventdata, handles)
f=str2double(get(handles.freq gen,’String’));
fbpf=num2str(f*(1-1/144)-30);
fid=tcpip open(’ttfvert2.desy.de’,5555);
s=strcat(’0;26;0;’, ’F’, fbpf , ’\’);
tcpip write(fid,s);
tcpip close(fid);
function deletemeasure Callback(hObject, eventdata, handles)
cavity1=zeros(1,9);
cavity=cavity1’;
setappdata(0,’cavity’,cavity);
function savemeasurefile Callback(hObject, eventdata, handles)
cavity=getappdata(0,’cavity’);
d=datestr(now,’mmddHHMM’);
save2file=strcat(’cavity’,d,’.m’);
save(save2file,’cavity’,’-ascii’,’-tabs’) ;
function offset I Callback(hObject, eventdata, handles)
function offset I CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function offset Q Callback(hObject, eventdata, handles)
function offset Q CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function dacoffset Callback(hObject, eventdata, handles)
offsetI=str2double(get(handles.offset I,’String’));
offsetQ=str2double(get(handles.offset Q,’String’));
ii set area(’WORD DAC OFFSET’,uint32(0),uint32(2),uint32(U22Dec([offsetI offsetQ],18)))
;
function quenchtable Callback(hObject, eventdata, handles)
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quenchtable=getappdata(0,’quenchtable’);
eacc=str2num(get(handles.eacc,’String’));
mode=str2num(get(handles.mode,’String’));
% m ist die mode, von links nach rechts steigt die frequenz, ganz rechts is pi
% mode
% n ist die nummer der zelle , von oben nach unten steigt die zellennummer
quenchtablecalc=zeros(9,9);
for m=9:-1:1

for n=1:9
quenchtablecalc(n,m)=floor(abs(sin((n-0.5)*m/9*pi)/sin(m/18*pi)));

end
end
quenchtable(:,mode)=eacc*quenchtablecalc(:,mode);
setappdata(0,’quench’,quenchtable);
quenchtableplot
function mode Callback(hObject, eventdata, handles)
function mode CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor’), get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);
end
function automatic Callback(hObject, eventdata, handles)
%% FREQUENZEN BERECHNEN und alle relevanten Werte setzen
%———————————————————————
f res=str2double(get(handles.modefreq,’String’));
ifreq = double(uint32(f res/144*10000))*100;
f1 = ifreq*9/1000000 ;
f2 = ifreq*144/1000000 ;
f3 = ifreq*143/1000000 ;
f1=num2str(f1,’%4.2f’);
f2=num2str(f2,’%8.4f’);
f3=num2str(f3,’%8.4f’);
set(handles.freq gen,’String’,f2);
set(handles.clockfreq,’String’,f1);
set(handles.convfreq,’String’,f3);
set(handles.daqtime,’String’,15);
set(handles.ptop,’String’,15);
set(handles.ps1,’String’,5);
set(handles.daqtime,’String’,num2str(14));
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set(handles.ptop,’String’,num2str(15));
leftspan=str2double(get(handles.freq gen,’String’))-0.5 ;
rightspan=str2double(get(handles.freq gen,’String’))+0.5 ;
set(handles.leftspan,’String’,num2str(leftspan));
set(handles.rightspan,’String’,num2str(rightspan));
fid=tcpip open(’ttfvert2.desy.de’,5555);
leftspan=get(handles.leftspan,’String’);
rightspan=get(handles.rightspan,’String’);
leftspanz=[’:FREQ:STAR’ ’ ’ leftspan];
rightspanz=[’;:FREQ:STOP’ ’ ’ rightspan];
s=strcat(’0;10;0;’,leftspanz , ’ MHz’,rightspanz , ’ MHz \’);
tcpip write(fid,s);
tcpip close(fid);
h=waitbar(0,’Please wait during testing...’,’CreateCancelBtn’,’setappdata(gcbf,’’cancelling”,1)’);
maxlevel=5;
minlevel=2;
progress=1;
stepsize=0.5;
wait step=(2*maxlevel+1)/stepsize;
cavity1=zeros(1,10);
cavity=cavity1’;
setappdata(0,’cavity’,cavity);
adcfreq=(str2double(get(handles.clockfreq,’String’)));
% Messschleife beginnt hier
%———————————————————————
for steps=minlevel:stepsize:maxlevel

waitbar(progress/wait step,h,sprintf(’Phase wird gesucht...’));
if getappdata(h,’cancelling’)

break
delete(h)

end
% PHASE FINDEN FUER DAS LEVEL
%———————————————————————
uni gen(adcfreq*1e6,0.1,0.09,steps*10000,’cw vco’,1);
ii set word(’WORD DAQ FREQ’,uint32(64));
pause(2) ;
[ phase char1 ] = sweep function2(-180:60:180,0.5);
uni loadrot(1,(phase-45))
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pause(3)
[ phase char2 ] = sweep function( (phase-45):2:(phase+45),2) ;
uni loadrot(1,phase)
ii set word(’WORD DAQ FREQ’,uint32(2048));
uni loadrot(1,phase);
uni gen(adcfreq*1e6,4,2.5,steps*10000,’sweep’,1);
pause(2) ;
counter = 1 ;
range = (phase-10):1:(phase+10) ;
amplitudes = zeros(length(range),1) ;
for I = range,

uni loadrot(1,I) ;
disp(I);
pause(0.5)
a = uni daq once([1 9],1,4) ;
amplitudes(counter) = min(abs(complex(a(:,1),a(:,2)))) ;
counter = counter + 1 ;

end
[val, ind] = min(amplitudes) ;
uni loadrot(1,range(ind))
uni gen(adcfreq*1e6,15,5,steps*10000,’sweep’,1)
set(handles.sliderValue editText,’String’,num2str(range(ind)));
% LAENGE DER PULSE
%——————————————————————-
p length=5;
ptop=3*p length;
div = double(ii get word(’WORD TIMING FREQ STR’)) ;
time base = 1/(div/(adcfreq*1e6))/512 ;
clk counts = floor(ptop*adcfreq*1e6/9)*9+8 ;
prog = [1 p length*time base 2^18-1] ;
ii set word(’WORD TIMING FREQ TRG’,uint32(clk counts));
ii set area(’AREA PROG’,uint32(0),uint32(length(prog)),uint32(prog)) ;
%DAQ-Timing
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8.2 QLnoBeam.m

function QLnoBeam(cav,evt)
%% Daten Laden
load acc5nobeam.mat;
modul=acc5nobeam;
%% Daten vorbereiten / Event auswaehlen
cavity=cav;
event=evt;
switch cavity
case 1

pfor=2;
probe=3;
pref=4;

case 2
pfor=5;
probe=6;
pref=7;

case 3
pfor=8;
probe=9;
pref=10;

case 4
pfor=11;
probe=12;
pref=13;

case 5
pfor=14;
probe=15;
pref=16;

case 6
pfor=17;
probe=18;
pref=19;

case 7
pfor=20;
probe=21;
pref=22;
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case 8
pfor=23;
probe=24;
pref=25;

end
a(:,1)=1e6*modul{pfor}(event,:,2);
a(:,2)=1e6*modul{pfor}(event,:,3);
b(:,1)=1e6*modul{probe}(event,:,2);
b(:,2)=1e6*modul{probe}(event,:,3);
c(:,1)=1e6*modul{pref}(event,:,2);
c(:,2)=1e6*modul{pref}(event,:,3);
%klystron window1=modul{26}(event,:,5);
%klystron window2=modul{26}(event,:,4);
pf=abs(complex(a(:,1),a(:,2)));
pfphase=(phase(complex(a(:,1),a(:,2)))*(180/pi));
pt=abs(complex(b(:,1),b(:,2)));
ptphase=(phase(complex(b(:,1),b(:,2)))*(180/pi));
pr=abs(complex(c(:,1),c(:,2)));
pt=slidingavg(pt,10);
pr=slidingavg(pr,10);
pf=slidingavg(pf,10);
z pt=b(:,1)+b(:,2)*j;
z pf=a(:,1)+a(:,1)*j;
pt=pt’;
pr=pr’;
pf=pf’;
omega 0=1.3e9;
f sample=1e6;
t=1/f sample*1:1024;
cavitystr=num2str(cavity);
eventstr=num2str(event);
%% Ableitung bestimmen und averaging Window anwenden
dt=1e-6;
dv(1:1023)=(pt(2:1024)-pt(1:1023));
dphiprobe=(ptphase(2:1024)-ptphase(1:1023));
dvdt=dv/dt;
dphiprobedt=dphiprobe;
meandvdt=slidingavg(dvdt,16);
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%% Detuning berechnen
for i=1:1023

detuning pf(i)=(1/(2*pi))*(dphiprobedt(i)-(1.3e9/3e6)*sin(phase(z pf(i))
-phase(z pt(i)))*(abs(z pf(i))/abs(z pt(i))));
end
%% DGL nach loaded Q aufloesen/berechnen/plotten
for i=1:1023

z loaded Q pf(i)=-0.5*(omega 0*(2*z pf(i)-z pt(i)))/(z pt(i)*detuning pf(i)*j-meandvdt(i));
end
loaded Q pf=abs(z loaded Q pf);
subplot(3,2,1)
plot(t,pf)
Title= strcat(’forward Power of cavity: ’,cavitystr,’ / ’,’Event: ’,eventstr);
title(Title)
xlabel(’time [ms]’);
ylabel(’Gradient [V/m]’)
subplot(3,2,2)
plot(t,pt)
Title=strcat(’transmitted Power of cavity: ’,cavitystr,’ / ’,’Event: ’,eventstr);
title(Title)
xlabel(’time [ms]’);
ylabel(’Gradient [V/m]’)
subplot(3,2,3)
plot(t(1:1023),meandvdt)
title(’dV c/dt - Sliding Average’)
xlabel(’time [ms]’);
subplot(3,2,4)
plot(t(1:1023),slidingavg(detuning pf,10))
title(’detuning ’)
xlabel(’time [ms]’);
ylabel(’detuning [Hz]’)
subplot(3,2,5)
mittelwert=mean(loaded Q pf);
error=std(loaded Q pf);
error ql=error/mittelwert;
line(1:1023)=mittelwert;
hold on
plot(t(1:1023),slidingavg(loaded Q pf,10))
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Title=strcat(’Q L, ’,’mean Value: ’,num2str(mittelwert,’%0.3g’),’, rms:
’,num2str(error ql),’%’);
title(Title)
ylabel(’loaded Q’);
xlabel(’time [ms]’);
plot(line,’r’,’LineWidth’,2)
hold off

8.3 qps.m

function data=qps();% start time
name(1,1) = cellstr(’-TStart 2009-09-17T15:30:00’);
end time
name(2) = cellstr(’-TStop 2009-09-17T15:31:00’);
% DAQ details - just use it as it is
name(3) = cellstr(’-Exp linac’);
name(4) = cellstr(’-DDir /daq data/ilc/LINAC’);
name(5) = cellstr(’-CDir /daq/ttf2/admtemp’);
chan={...
’TOROID/1TCOL’...
’LLRF/C1.ACC5.PFOR’,...
’LLRF/C1.ACC5.PROBE’,...
’LLRF/C1.ACC5.PREFL’,...
’LLRF/C2.ACC5.PFOR’,...
’LLRF/C2.ACC5.PROBE’,...
’LLRF/C2.ACC5.PREFL’,...
’LLRF/C3.ACC5.PFOR’,...
’LLRF/C3.ACC5.PROBE’,...
’LLRF/C3.ACC5.PREFL’,...
’LLRF/C4.ACC5.PFOR’,...
’LLRF/C4.ACC5.PROBE’,...
’LLRF/C4.ACC5.PREFL’,...
’LLRF/C5.ACC5.PFOR’,...
’LLRF/C5.ACC5.PROBE’,...
’LLRF/C5.ACC5.PREFL’,...
’LLRF/C6.ACC5.PFOR’,...
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’LLRF/C6.ACC5.PROBE’,...
’LLRF/C6.ACC5.PREFL’,...
’LLRF/C7.ACC5.PFOR’,...
’LLRF/C7.ACC5.PROBE’,...
’LLRF/C7.ACC5.PREFL’,...
’LLRF/C8.ACC5.PFOR’,...
’LLRF/C8.ACC5.PROBE’,...
’LLRF/C8.ACC5.PREFL’,...
’LLRF.ML/ACC5 AMPL’,...
’LLRF.ML/ACC5 PHASE’,...
’LLRF/ACC5.TOTAL’};
% DAQ channel name
for i=1:length(chan)
name(5+i)=cellstr(sprintf(’-Chan %s’,chan{i}));
end
[raw,err]=daq read svr(name);
if err
err
return
end
% convert struct to cell array
raw=struct2cell(raw);
% assume we get at least 1 event
labels=fieldnames(raw{1});
data=cell(length(labels),1);
for n=1:length(raw)
raw{n}=struct2cell(raw{n});
end
numevt=length(raw);
if numevt==0
error(’DAQ read returned no events’);
end
%allocate space for all data in advance
for cc=1:length(raw{1})

d=raw{1}{cc};
disp(sprintf(’A %d’,cc))
if isfield(d,’dtype’)

% This is the time stamp
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data{cc}=zeros(numevt,2);
elseif isfield(d,’ndata’) && isfield(d,’nchan’)

dmax=0;
for nn=1:length(raw)

dmax=max(dmax, raw{nn}{cc}.ndata);
end
disp(sprintf(’X %d %d %d’,numevt,dmax,d.nchan));
%data{cc}=zeros(numevt,dmax,d.nchan+1);
% initialize to NaN
data{cc}=repmat(NaN,[numevt,dmax,d.nchan+1]);

else
data{cc}=cell(numevt,1);

end
end
disp(’Formatting’)
for ee=1:length(raw)

if mod(ee,100)==0
disp(sprintf(’> %f’,100*ee/length(raw)));

end

for cc=1:length(labels)
% disp(sprintf(’C %d %s’,cc));

d=raw{ee}{cc};

if isfield(d,’dtype’)
% time stamp
data{cc}(ee,1)=d(1,1)+d(2,1)*1e-6;
data{cc}(ee,2)=d(3,1);
continue

end

dt=d.dtype;
if isfield(d,’ndata’) && isfield(d,’nchan’)

data{cc}(ee,1:d.ndata,2:(d.nchan+1))=...
reshape(d.data,[1 d.ndata d.nchan]);
% construct timebase
t=0:(d.ndata-1);
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t=d.start + d.inc*t;
data{cc}(ee,1:d.ndata,1)=reshape(t,[1 d.ndata 1]);

else
data{cc}{ee}=d;

end
end

end

8.4 ubertragungsfunktion.m

% for uebertragungsfunktiontest
clear all

% general resonanzfrequenz –> f,w
f0 = 1.3e9;
w0 = 2*pi*f0;

QL9 = 3e6;

% resonanzfrequenz bei jedem modus –> f
f(9) = 1300444000;
f(8) = f(9)-800000;
f(7) = f(9)-3053000;
f(6) = f(9)-6501000;
f(5) = f(9)-10694000;
f(4) = f(9)-15122000;
f(3) = f(9)-19237000;
f(2) = f(9)-22594000;
f(1) = f(9)-24773000;

vec=1:9;

% kopplung zwischen jeden zwei cavitycells
kopplung = 2 * sin(pi.*vec/18).^2;
kopplung(9)=1;
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% halbe bandbreite –> w12 von jedem FM
w12 = kopplung * pi.* f / QL9;

% idealen Verstimuung –> dw von jedem FM
dw = 2 * pi.* (f - f(9));

% uebertragungsfunktion von jedem cavitycell
h cav mode = [tf([w12(1) w12(1)^2], [1 2*w12(1) w12(1)^2+dw(1)^2]), ...
-1 * tf([w12(2) w12(2)^2], [1 2*w12(2) w12(2)^2+dw(2)^2]), ...
tf([w12(3) w12(3)^2], [1 2*w12(3) w12(3)^2+dw(3)^2]), ...
-1 * tf([w12(4) w12(4)^2], [1 2*w12(4) w12(4)^2+dw(4)^2]), ...
tf([w12(5) w12(5)^2], [1 2*w12(5) w12(5)^2+dw(5)^2]), ...
-1 * tf([w12(6) w12(6)^2], [1 2*w12(6) w12(6)^2+dw(6)^2]), ...
tf([w12(7) w12(7)^2], [1 2*w12(7) w12(7)^2+dw(7)^2]), ...
-1 * tf([w12(8) w12(8)^2], [1 2*w12(8) w12(8)^2+dw(8)^2]), ...
tf(1, [1/w12(9) 1])];

% diskrete uebertragungsfunktion von jedem cavitycel l
h cav mode dis1 = c2d(h cav mode(1), 0.1, ’tustin’);
h cav mode dis2 = c2d(h cav mode(2), 0.1, ’tustin’);
h cav mode dis3 = c2d(h cav mode(3), 0.1, ’tustin’);
h cav mode dis4 = c2d(h cav mode(4), 0.1, ’tustin’);
h cav mode dis5 = c2d(h cav mode(5), 0.1, ’tustin’);
h cav mode dis6 = c2d(h cav mode(6), 0.1, ’tustin’);
h cav mode dis7 = c2d(h cav mode(7), 0.1, ’tustin’);
h cav mode dis8 = c2d(h cav mode(8), 0.1, ’tustin’);
h cav mode dis9 = c2d(h cav mode(9), 0.1, ’tustin’);
% uebertragungsfunktion von dem ganzen cavity
% hcav = sum(hcavcell);
h cav = h cav mode(1) + h cav mode(2) + h cav mode(3) + h cav mode(4) ...
+ h cav mode(5) + h cav mode(6) + h cav mode(7) + h cav mode(8) ...
+ h cav mode(9);

% diskrete uebertragungsfunktion von dem ganzen cavity
h cav dis = c2d(h cav, 0.1, ’tustin’);

% uebertragungsfunktion von klystron
h kly = tf(1, [1/2/pi/3e6 1]);
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% uebertragungsfunktion von feedback delay
delay = 100e-6; %%%%%%%—————— delay veraenderen ——————%%%%%%%
s = tf(’s’);
FB Delay = exp(-1 * s * delay);

% feedback gain
FB Gain = 500; %%%%%%%—————— gain veraenderen ——————%%%%%%%

parameter=strcat(’Feedback Delay:’,num2str(delay),’s, Feedback Gain:’,num2str(FB Gain));
% transformationsfunktion von dem system bei open loop
h tf = FB Gain * FB Delay * h cav;

% diskrete transformationsfunktion von dem system
h tf dis = c2d(h tf, 0.1, ’tustin’);

% plot die transformationsfunktion in Bode
%hold on
[mag,pha,w]= bode(h tf, {100, 10e7*2*pi});
subplot(2,1,1)
loglog(w./(2*pi),reshape(mag,1,length(mag)),’b’);
xlabel(’Abweichungsfrequenz(Hz) zu pi-modus’);
ylabel(’Amplitude(dB)’);
xlim([10 10^8]);
ylim([10^-7 1000]);
text(2*10^1,10^-6,parameter)
subplot(2,1,2)
semilogx(w./(2*pi),reshape(pha,1,length(mag))-pha(1),’b’);
xlabel(’Abweichungsfrequenz(Hz) zu pi-modus’);
ylabel(’phase(deg)’);
xlim([10 10^8]);
ylim([-2000 0]);
%hold off
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8.5 Characteristic curves of test stand hardware

8.5 Characteristic curves of test stand hardware

Figure 8.1: output - input relation of the vectormodulator. nonlinear regime / satu-
ration is reached.
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Figure 8.2: ADC-signal vs. powerinput.
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8.5 Characteristic curves of test stand hardware

Figure 8.3: ADC-signal vs. powerinput.
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Figure 8.4: ADC-signal vs. powerinput.
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8.5 Characteristic curves of test stand hardware

Figure 8.5: Picture of the RF Box, taken from above.
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8.6 Fouriertransformation of reflected power to identify the
noise

Figure 8.6: FFT of reflected power, sidebands generated by downconverter can be seen
at IF+ [9, 18, 36, 63] MHz.

The oscillations are at IF+ ≈ 16 and 72 Hz.
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8.6 Fouriertransformation of reflected power to identify the noise

Figure 8.7: FFT of reflected power, sidebands filtered out by low-pass. oscillations still
seen in reflected power.
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