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1 Introduction

More than a century ago it was believed that physicists had solved the last great mysteries of
nature [1]. The remaining caveats, which could not be explained at that time, like the spectrum
of the black-body radiation, were thought of as minor inconsistencies to be resolved very soon.
However, the approaches that were followed for the resolution of the remaining problems brought
up the formulation of quantum theory and general relativity. These revolutionised the whole
view of the world as accepted in those days and pushed open the door to new scientific territories
which were unknown to exist until then. Now, more than a hundred years after most questions
in physics seemed to be answered and the theoretical description of nature was assumed to be
complete, we have to admit that the number of unanswered, fundamental questions has steadily
increased since then.

One of the fields in physics that arose from a number of new experimental results and new
theoretical concepts is the field of elementary particle physics, whose birthday is sometimes
defined by the discovery of the electron by J. J. Thompson in 1897 [2]. In the following decades
discoveries of more and more elementary particles and bound states were announced, finally
opening out in the discovery of what is today believed to be the top quark [3] and the tau
neutrino [4]. The current theory of particle physics, the Standard Model (SM), which has been
developed for many years, has until now been most successfull in describing the experimental
results in this field.

However, it is known today that the SM is not a complete theory of nature. There is a
number of shortcomings, which require either an extended or a completely new theory. The
Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN)
near Geneva, Switzerland, has been built to provide experimental input for the search of such
an extended or new theory, amongst other purposes. It is expected that new physics will be
observed at the LHC, as physicists will set foot on so far unknown ground when the machine
starts colliding protons at its design center-of-mass energy of 14 TeV. Collisions at this center-
of-mass energy have never been observed under laboratory conditions so far, such that the LHC
will allow physicists all over the world to “explore strange new worlds, to seek out new particles
and new interactions, to boldly go where no man has gone before”.

One family of the extensions to the SM, which resolve some of its shortcomings in an elegant
way, are supersymmetric extensions, the best studied of which is the Minimal Supersymmetric
Standard Model (MSSM). This theory predicts a number of so far undiscovered particles, the so
called superpartners of the SM particles, which makes it attractive not only for particle physics
but also for cosmology. This is because the lightest of these new particles might turn out to
constitute a significant amount of the Cold Dark Matter in the universe, whose identity is mainly
unknown until now.

The question if supersymmetry (SUSY) is realised in nature is therefore one of the most
interesting unanswered questions in modern particle physics. A number of experiments at the
Large Electron Positron Collider and at the Tevatron, as well as astrophysical experiments, have
already excluded certain regions in the MSSM configuration space. However, it is expected that
a definite answer to this question can for the first time be given by data from the experiments
at the LHC.
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1 Introduction

At the LHC it will be possible to directly produce the superpartners of the SM particles
with a significant rate for the first time, given that nature is actually supersymmetric. The
measurement of these particles’ properties, like their masses and couplings, at the two LHC
multipurpose experiments ATLAS and CMS will finally allow for a first reconstruction of the
fundamental parameters of the supersymmetric theory and the rejection of some supersymmetric
models. This will in turn allow for the prediction of other important quantities, one of which
is the fraction of supersymmetric Cold Dark Matter. As for any other measurement, a detailed
analysis of the uncertainties on the reconstructed parameters is crucial, as these are finally
pivotal for the uncertainties - and therefore the significance - of the predicted quantities. It
is the aim of this study to provide a first insight into the complex task of SUSY parameter
estimation, with the main focus on a first estimation of systematic uncertainties.

After this introduction, a short theoretical overview about the SM and its minimal supersym-
metric extension, the MSSM is given in chapter 2. In chapter 3, the basic problem of SUSY
parameter estimation is introduced, starting with a very simple example from classical mechan-
ics which is then carried over to SUSY in particle physics. The LHC and the ATLAS detector
are shortly described in chapter 4. In chapter 5, a method for the measurement of a mass
related supersymmetric observable is tested in a best-case scenario with the ATLAS detector.
This observable, together with a number of other toy measurements, is finally used in chapter 6,
where a first study on systematic uncertainties for SUSY parameter extraction with the program
Fittino is presented.

In the present thesis, natural units have been used, i.e. c = 1 = ~. All masses and momenta
are therefore given in units of eV and not in eV/cn. In all shown Feynman diagrams, time floats
from left to right.
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2 The Standard Model of Elementary

Particle Physics and its Minimal

Supersymmetric Extension

2.1 The Standard Model of Elementary Particle Physics

The so far most successfull theoretical model of elementary particle physics is the Standard
Model (SM), which is a locally gauge invariant, renormalisable, Lorentz covariant quantum
field theory. It has been developed over many years, and in its current form it has been most
successfull in describing nearly all experimental results in the field of high energy physics [5–8].
A detailed description of the aspects of quantum field theory and the SM can for example be
found in [9–13], on which this overview mainly relies.

The SM distinguishes between two types of elementary particles, namely fermions with half-
integer spin, and bosons with integer spin. There are twelve fermions and four vector bosons,
the former making up the matter in the universe, the latter mediating forces between them.
By now it is believed that there are four such fundamental interactions, three of them being
described by the SM. Historically, the first of these is the electromagnetic interaction, which was
described classically by Maxwell [14]. Electromagnetic interactions take place between particles
carrying an electric charge and are mediated by the photon. The second fundamental force is
the weak interaction, known for the β-decay, as an example. The three heavy gauge bosons W±

and Z0 are the force carriers associated to the weak interaction, whose associated hypercharge
is the weak isospin. In atomic nuclei, the dominant force is the strong force, which is the third
interaction being described by the SM. This force affects particles which carry a so-called colour
charge and is mediated by the gluons. The strength of each force is characterised by a coupling
constant. At relatively low energies (≤ 1 GeV), these numbers are at the order of 1 for strong
interactions, 10−2 for electromagnetic and 0.7 for weak interactions. Only particles carrying the
associated charge can interact via the respective fundamental force. Finally, the last particle in
the SM is a fundamental scalar, the Higgs particle. All particles in the SM acquire mass via
their coupling to the Higgs field. This last particle has not been found until now (February
2010).

Gravity, which was discussed by physicists even before electromagnetic interactions, is not
a part of the SM. Although gravity is most evident in everyday life, it is the weakest of the
fundamental interactions. It appears dominant at large scales only because most objects do not
carry any net charge associated with the stronger interactions, such that these become negligible.
At scales where quantum effects become visible, and which are accessible today, gravity does not
play a key role, such that no hints on a quantum theory of gravity are given by the experimental
side. In addition, despite the fact that the classical force laws of gravitational and electric
interactions are mathematically identical, the hypothetical force mediator in quantum gravity
would carry spin 2, in contrast to the photon, which carries spin 1. This is due to the fact
that the source of gravity is the stress-energy tensor, which is of second rank, whereas the four-
current, the source of electromagnetism, is a first rank tensor. This complicates the formulation
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2 The Standard Model of Elementary Particle Physics and its Minimal Supersymmetric Extension

Figure 2.1: The particle content of the SM, which contains six quarks (upper left), three
charged leptons and three neutral leptons (lower left), as well as four gauge bosons (right) and
the Higgs-boson (centre), which has not been experimentally observed, yet. The quarks in
principle occur with three different colour charges.

of a quantum theory of gravity, and although Weinberg gave a treatment of spin 2 particles (see,
for example, [15]), not much attention will be paid to gravity in the following.

The particle content of the SM is shown in Figure 2.1 and Tables 2.1 and 2.2. In the SM, each
particle is connected to an antiparticle, which has the same quantum numbers except for the
charge. As a matter of fact, neutrinos do not carry charge, such that they might be Majorana
fermions being their own antiparticle. However, this is not confirmed by experiment, yet. The
fermions, of which all visible matter in the universe is composed according to the SM, are divided
into leptons and quarks. While the former can exist as free particles, the latter always build
bound states, like the proton, due to confinement. The charged leptons couple to photons and
the heavy gauge bosons, while the neutral leptons only interact weakly. In addition, the quarks
also carry a colour charge and are therefore liable to the strong force, too.

2.1.1 Local Gauge Invariance, Interactions and the Higgs Mechanism

One of the remarkable features of the SM is the emergence of the SM gauge bosons and interac-
tions from the requirement of local gauge invariance of the free theory. This is one of the most
fundamental principles in particle physics: The SM gauge bosons are not put into the theory by
hand, but it is the concept of symmetries that rules all particle interactions. In the following,
internal symmetries, i.e. transformations taking place in abstract spaces, are considered rather
than external symmetries, i.e. space-time transformations. If not stated otherwise, the Einstein
notation is used.

A physical system is said to be invariant - or symmetric - with respect to a certain transfor-
mation if the action integral

S =

∫

L (φi, ∂µφi, x
µ) dx0 =

∫

L (φi, ∂µφi, x
µ) d4x, (2.1)

where L is the Lagrangian, L the Lagrangian density, xµ the relativistic space-time coordinates

4



2.1 The Standard Model of Elementary Particle Physics

Particle Type Generation Mass [MeV] El. Charge

electron-neutrino (νe) lepton I ≥ 0 ≤ 2 ∗ 10−6 0
electron (e) lepton I 0.511 -1

muon-neutrino (νµ) lepton II ≥ 0 ≤ 2 ∗ 10−6 0
muon (µ) lepton II 105.7 -1

tau-neutrino ντ lepton III ≥ 0 ≤ 2 ∗ 10−6 0
tau (τ) lepton III 1,776.84 ± 0.17 -1

up (u) quark I 1.5 ≤ mu ≤ 3.3 +2/3
down (d) quark I 3.5 ≤ md ≤ 6.0 -1/3

charm (c) quark II 1,270+70
−110 +2/3

strange (s) quark II 105+25
−35 -1/3

top (t) quark III (171.3 ± 1.6) · 103 +2/3

bottom (b) quark III (4.2+0.17
−0.07)· 103 -1/3

Table 2.1: The SM fermions with their masses and electric charge. Leptons and quarks are
separated into three generations, as illustrated here. The masses and charges are taken from
[16]. The extraordinary role of the top quark in particle physics becomes clear, as its mass
is nearly two orders of magnitude above the mass of the b-quark, which is the next heaviest
fermion. Due to its high mass, the top quark decays before it can form any bound states. It’s
charge has not been measured until now.

Particle Associated Interaction Mass [GeV] El. Charge

gluon (g) strong 0 0
photon (γ) electromagnetic 0 0

W± weak 80.398 ± 0.025 ±1
Z0 weak 91.188 ± 0.002 0

Table 2.2: The Standard Model gauge bosons with their masses and electric charge. The
numbers are taken from [16]. In addition to their masses and charge, the associated gauge
interactions are shown.

and the φi denote the involved quantum fields, does not change under the transformation. This
implies that the equations of motion for the physical fields φi, given by the Euler-Lagrange
equations

∂µ

(
∂L

∂ (∂µφi)

)

− ∂L
∂φi

= 0, (2.2)

stay invariant under the transformation, while the Lagrangian may change by a total derivative.
Noether’s theorem, which was proven by Emmy Noether in 1918 for the first time [17], connects
such symmetries to conserved quantities. It is of fundamental importance in physics. If the
transformation

xµ → xµ + δxµ = xµ + ǫXµ, (2.3)

φi → φi + δφi = φi + ǫΦi (2.4)

leaves the action integral invariant, Noether’s theorem states that the quantities

jµ = − ∂L
∂(∂µφi)

Φi +

(
∂L

∂(∂µφi)
∂νφi − Lδµ

ν

)

Xν (2.5)
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2 The Standard Model of Elementary Particle Physics and its Minimal Supersymmetric Extension

are conserved in the sense that

∂µj
µ = 0. (2.6)

An important requirement is that the transformations are continuous. The operators performing
such transformations on quantum fields are representations of Lie-groups, whose elements depend
on one or more continuous parameters and are differentiable with respect to these. It was shown
by Wigner, that these representations must be either unitary or anti-unitary [18]. Any unitary
operator U acting on a physical field, can be written as

U(Θ) = eiΘA, (2.7)

where Θ is a vector of the group parameters and A a vector of hermitian operators. The
operators Ai are called the generators of the group, as for infinitesimal transformations, i.e.
infinitesimal values of each Θi, (2.7) can be written as

U(dΘ) = 1 + iAdΘ. (2.8)

Any finite transformation can then be constructed from these infinitesimal transformations. If
Θ 6= Θ(x), a system is said to be globally invariant under the transformations U(Θ). If the
parameters are allowed to be functions of space and time, the system is said to be locally
invariant under the transformation U . It is now summarised how the requirement of gauge
invariance under local U(1) phase transformations for a system with one free electron yields the
existence of a gauge field, which is the photon field in this case.

The Lagrangian density for a free electron field ψ is given by

L = iψγµ∂µψ −meψψ, (2.9)

which, by applying (2.2), yields the Dirac Equation,

(iγµ∂µ −me)ψ = 0. (2.10)

The Lagrangian density (2.9) is obviously invariant under global U(1)-phase transformations

ψ → eiαψ = (1 + iα)ψ, α ∈ R (2.11)

where the equal sign is valid for infinitesimal transformations only. The invariance under these
transformations, according to Noether’s Theorem, implies the conservation of the current

jµ
em ∝ ψγµψ. (2.12)

The proportionality factor can then be chosen as the electron’s charge −e, such that (2.12) is
the electron’s charge current. This choice identifies the generators of this symmetry with the
charge operators, Q. Applying (2.6) leads to charge conservation. This shows that the phase α is
of no physical meaning, such that it can be chosen arbitrarily and fixed. At two different places,
different values of α, i.e. different gauges, might be chosen. This way, α becomes dependent on
the space-time coordinates, but the physics observed in both places should be the same. For
this reason not only global, but also local gauge invariance is imposed.

However, (2.9) is not invariant under local phase transformations

ψ → eiα(xµ)ψ. (2.13)

6



2.1 The Standard Model of Elementary Particle Physics

This is due to the derivative with respect to xµ in the first term of the Lagrangian. Applying
(2.13) yields

δL = −ψγµψ∂µα(xµ), (2.14)

which is not a total derivative. The problem is solved by introducing the covariant derivative

Dµ = ∂µ − ieAµ, (2.15)

where the vector field Aµ is required to transform as

Aµ → Aµ +
1

e
∂µα(xµ) (2.16)

under a local phase transformation. Rewriting (2.9) with the substitution (2.15) yields

L = iψγµDµψ −meψψ

= ψ(iγµ∂µ −me)ψ + eψγµψAµ

(2.12)
= ψ(iγµ∂µ −me)ψ − jµ

emAµ, (2.17)

where the latter equal sign is valid because the conserved current according to Noether’s theorem
is the same for both global and local phase transformations. Thus the requirement of local
gauge invariance forces the introduction of a new vector field which couples to the electron. The
equation of motion obtained by (2.17) is

(iγµ∂µ −me)ψ + eγµψAµ = 0, (2.18)

which is exactly what is obtained by setting up the single particle wave equation for an elec-
tron in an electromagnetic field, without imposing any specific transformation behaviour. The
gauge field Aµ can therefore be identified with the photon field, and the Lagrangian (2.17) is
“completed” by adding the kinetic term for the photon,

L = ψ (iγµ∂µ −me)ψ + eψγµAµψ − 1

4
FµνF

µν , (2.19)

where the field strength tensor

Fµν = ∂µAν − ∂νAµ, (2.20)

which is invariant under (2.16), has been used. A mass term proportional tom2AµA
µ is forbidden

by gauge invariance.
The physically well motivated requirement for invariance under local U(1) phase transforma-

tions of a free electron field yields the complete Lagrangian density for quantum electrodynamics;
a natural symmetry introduces one of the four fundamental interactions.

The other two interactions described by the SM can be derived in the very same way, just
that different transformations need to be taken into account. For strong interactions, these are
local SU(3) phase transformations,

ψq → Us(α)ψq = eiαi(x
µ)Λiψq, (2.21)

where ψq denotes a quark field, the αi are the continuous parameters of the transformation and
the Λi are the respective generators. There are three types of colour charge, namely red, green

7



2 The Standard Model of Elementary Particle Physics and its Minimal Supersymmetric Extension

and blue, but all free particles observed so far do not carry any net colour. This is the reason
why SU(3) rather than U(3) transformations are considered. As stated above, the matrix Us

needs to be unitary, which requires the generators to be hermitian. Furthermore, since Us ∈
SU(3) and thus detU = 1, the Λi are required to be traceless. In general there are eight linearly
independent, traceless hermitian matrices, which are mostly chosen as the eight Gell-Mann
matrices λi. These matrices do not commute pairwise, which has remarkable consequences. If
the invariance of (2.9), where ψ is to be replaced by a quark field ψq, under transformations
(2.21) is requested, eight gauge fields Ga

µ have to be introduced. Since

[Λi,Λj ] = ifijkΛk, (2.22)

with the SU(3) structure constants fijk, these fields need to transform as

Gi
µ → Gi

µ − 1

gs
∂µαi(x

µ) − fijkαjG
k
µ (2.23)

in order to achieve gauge invariance. The kinetic term for the SU(3) gauge fields becomes

Lkin,gauge = −1

4
Gi

µνG
µν
i , (2.24)

where

Gi
µν = ∂µG

i
ν − ∂νG

i
µ − gsfijkG

j
µG

k
ν . (2.25)

Due to the non-vanishing structure constants of the SU(3) group, self interaction terms need
to be introduced in the field strength tensor Gi

µν . These are of third and fourth order in the
eight gauge fields, which are the eight gluon fields, physically. The mediators of the strong force
carry colour and thus couple to themselves. This is directly related to the so-called asymptotic
freedom, which describes the fact that strong interactions become smaller at smaller distances.
As in the electromagnetic case, the gluons must be massless because the introduction of a mass
term would spoil the local gauge invariance again.

For weak interactions, the procedure is not that straight forward. The reason for this is that
the gauge bosons associated to weak interactions are known to be massive. For the theory
discussed so far, this is a fundamental problem. Mass terms for the gauge fields, which are
put into the Lagrangian density by hand, besides spoiling the symmetry, spoil renormalisability,
which is discussed in chapter 2.1.2, as well. This problem can be solved in an elegant way via
the Higgs mechanism. Before this mechanism is described, electroweak unification needs to be
summarised.

The charge associated to weak interactions is the weak isospin T i. The strength of weak
interactions becomes comparable to that of electromagnetic interactions at scales larger than
roughly 100 GeV. The relative weakness of the weak interactions with respect to electromagnetic
interactions at lower momentum transfers is related to the mass of the heavy gauge bosons as
the propagator for the Z0 and W± bosons is given by

−i
(
gµν − qµqν/M

2
)

q2 −M2
, (2.26)

where M denotes the mass of the respective boson. When trying to construct weak currents
which reflect an assumed underlying SU(2) symmetry, these currents have only left chiral com-
ponents due to the V-A structure of the weak interactions. Taking into account experimental
data from neutrino-quark scattering, this cannot be correct. The neutral weak current

J3
µ =

1

2
(νLγµνL − eLγµeL) , (2.27)

8



2.1 The Standard Model of Elementary Particle Physics

associated to the Z0, does not include a right chiral component, but a right chiral component is
experimentally observed.

Now, (2.12) is a neutral current with both a right chiral and a left chiral component. Com-
bining the electromagnetic with the neutral weak current, introducing the hypercharge

Y = 2
(
Q− T 3

)
, (2.28)

leads to

jY
µ = 2

(
jem
µ − J3

µ

)
. (2.29)

In analogy to the U(1) symmetry group, generated by the charge operator Q, the operator Y
generates a new symmetry group, which is named U(1)Y to distinguish between the mixed -
or unified - electroweak symmetry group and the pure electromagnetic symmetry group, which
from now on will be referred to as U(1)em. The complete electroweak interactions are then
described by a SU(2)L× U(1)Y symmetry group with gauge fields Wµ and Bµ, from which the
physical gauge fields are derived as

W±
µ =

√

1

2

(
W 1

µ ∓ iW 2
µ

)
W± bosons, (2.30)

Zµ = W 3
µ cos θw −Bµ sin θw Z0 boson and (2.31)

Aµ = W 3
µ sin θw +Bµ cos θw photon. (2.32)

The couplings are then given by

g =
e

sin θw
and g′ =

e

cos θw
, (2.33)

where θw is the Weinberg angle,

cos θw =
mW

mZ
, (2.34)

g describes the coupling of the currents J i
µ to the gauge fields W i

µ, and g′ describes the coupling

of jY
µ to Bµ. This description is far from being complete and is given in more detail in [12].

As mentioned before, the non-vanishing mass of the weak gauge bosons cannot be introduced
by hand into the Lagrangian density, as this would destroy the renormalisability and completely
invalidate the theory. This can be solved by the Higgs mechanism, which in the following is
described for a simplified Lagrangian density including only electrons and electron neutrinos.
The simplification allows for the description of the basic idea of the mechanism, which afterwards
can easily be applied to more complex Lagrangian densities, as for example done in [12].

A simple Lagrangian density, including only electrons and electron neutrinos, which is invari-
ant under SU(2)L×U(1)Y transformations, is given by

L1 = χγµ

(

i∂µ − 1

2
gτ · Wµ +

1

2
g′Bµ

)

χ

+ eRγ
µ
(
i∂µ + g′Bµ

)
eR − 1

4
WµνW

µν − 1

4
BµνB

µν , (2.35)

where

Wµν = ∂µWν − ∂νWµ − gWµ × Wν , (2.36)

Bµν = ∂µBν − ∂νBµ and (2.37)

χ =

(
eL
νL

)

. (2.38)
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2 The Standard Model of Elementary Particle Physics and its Minimal Supersymmetric Extension

Neither the fermionic nor the bosonic fields included in this Lagrangian density get a mass term,
as both is incompatible with the requirement of local gauge invariance. Nevertheless, by adding
a second term to (2.35), the boson and fermion masses can be obtained. This term is given by

L2 =

∣
∣
∣
∣

(

i∂µ − gT · Wµ − g′
Y

2
Bµ

)

φ

∣
∣
∣
∣

2

−µ2φ†φ− λ(φ†φ)2
︸ ︷︷ ︸

V (φ)

, (2.39)

in which two additional complex scalar fields, constituting an isospin doublet

φ =

(
φ+

φ0

)

=

√

1

2

(
φ1 + iφ2

φ3 + iφ4

)

, (2.40)

with hypercharge Y = 1 have been introduced. Now, if µ2 < 0 and λ > 0, V (φ) has a minimum
at

|φ|2 = −µ
2

λ
. (2.41)

This means, that the vacuum expectation value of the field φ is not zero, but there is a hyper-
sphere in the φi-space with non-vanishing radius that minimizes V (φ). By choosing a specific
value for the φi, namely

φ2
1 = φ2

2 = φ2
4 = 0, φ2

3 = v2 = −µ
2

λ
, (2.42)

and only looking at small perturbations h(x) from this value, i.e.

φ(x) =

√

1

2

(
0

v + h(x)

)

, (2.43)

the SU(2)L× U(1)Y symmetry is spontaneously broken. The ground state does not reflect the
symmetry. This is referred to as electroweak symmetry breaking (EWSB). Nevertheless, the
pure U(1)em symmetry is conserved, as the chosen ground state for φ is neutral. If this ground
state is put into (2.40), the mass terms for the heavy gauge bosons emerge:

mW =
1

2
vg, (2.44)

mZ =
1

2
v
√

g2 + g′2, (2.45)

mA = 0, (2.46)

whereas the latter identity reflects the remaining invariance of the Lagrangian density under
U(1)em transformations. For the fermion masses, in the present case only the electron’s mass,
another term has to be added to the Lagrangian density. This term is

L3 = −Ge

(

χ†φeR + eRφ
†χ
)

. (2.47)

where

Ge =
√

2
me

v
. (2.48)

If quarks are considered as well their mass is generated by the Higgs field φ in a very similar
way. There is one difference, which becomes important if the theory is made supersymmetric

10



2.1 The Standard Model of Elementary Particle Physics

(see chapter 2.2). For the up-type quarks, a second Higgs doublet needs to be created, which in
the SM is essentially given by the hermitian conjugate of φ, namely

φc = −iτ2φ∗. (2.49)

So far, it was described how all interactions between particles in the SM can be derived from
the requirement of local gauge invariance under appropriate phase transformations. Further-
more, weak and electromagnetic interactions can be unified, such that the SM is a SU(3)colour×
SU(2)L× U(1)Y gauge theory. The fact that the gauge bosons of the weak interaction are
massive requires the introduction of a Higgs field. By a specific choice of the non-vanishing
vacuum expectation value of this field, the SU(2)L× U(1)Y symmetry is spontaneously broken
and the masses for all massive fermions and bosons are generated. In the next chapter, another
important feature of the SM is shortly described.

2.1.2 Renormalisation and the Running of Physical “Constants”

If higher order corrections to electron-muon scattering are considered, one of the Feynman
diagrams to be taken into account is shown in Figure 2.2(b). If the matrix element for this
diagram is calculated, it can be shown that the addition of it to the matrix element of the
scattering process shown in Figure 2.2(a) is effectively a modification of the photon propagator,
namely

−igµν

q2
→ −igµν

q2
− Iµν

q4
, (2.50)

where

Iµν = −igµνq
2I
(
q2
)

+ qµqνJ
(
q2
)
. (2.51)

In this expression for the correction to the photon propagator, the latter term vanishes when
the propagator couples to external currents. Now

I
(
q2
)

=
αem

3π

{

lim
ΛC→∞

ln

(

Λ2
C

m2
f

)

− 6

∫ 1

0
z(1 − z) log

(

1 − q2z(1 − z)

m2
f

)

dz

}

, (2.52)

which is logarithmically divergent with the introduced cutoff ΛC . In (2.52), mf refers to the
mass of the fermion in the loop.

Without considering the limit for a moment, the matrix element for electron-muon scattering
including one loop corrections can be written as

M = −4παemj
e
em

gµν

q2

{

1 − αem

3π

[

ln

(

Λ2
C

m2
f

)

− f
(
−q2

)

]}

jµ
em, (2.53)

≈ −4παR
emj

e
em

gµν

q2

{

1 +
αR

em

3π
f
(
−q2

)
}

jµ
em, (2.54)

where the renormalised coupling constant

αR
em = αem

(

1 − αem

3π
ln

(

Λ2
C

m2
f

))

(2.55)
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2 The Standard Model of Elementary Particle Physics and its Minimal Supersymmetric Extension
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γ
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Figure 2.2: (a) Tree level diagram for electron-muon scattering via t-channel photon exchange.
(b) A loop-diagram for electron-muon scattering. The exchanged photon splits into a fermion-
antifermion pair, which reannihilates to the same photon. If this diagram is included in the
calculation of the matrix element, the matrix element diverges. Effectively, the inclusion is a
change in the photon propagator, such that the divergence can be absorbed in renormalised
coupling constants.

has been introduced and terms O(α3
em) have been omitted. The infinities arising from loop-

diagrams like the one shown in Figure 2.2(b) by sending the cutoff ΛC to infinity are absorbed in
the renormalised coupling constant. Whenever this is possible, a theory is called renormalisable,
which is a crucial requirement for a quantum field theory, because non-renormalisable theories
do not have any prediction power.

Thus, couplings which appear in tree level diagrams receive higher order corrections, which
can be separated into an infinite and a finite part. The infinite part can be absorbed by a
reinterpretation of the coupling constant. What remains is a finite correction of the form f

(
−q2

)
.

This can as well be absorbed into the coupling constant, which actually makes the constant a
function of the momentum transfer q2, given by

αR
em(q2) = αR

em (0) ·
(

1 +
αR

em(0)

3π
f(−q2)

)

. (2.56)

The dependence of the coupling “constant” on the momentum transfer is indicated by the term
running coupling. The effect can be explained in an illustrative way at least for electromagnetic
interactions: The reasons for the running of the coupling are higher order corrections, which in
principle reflect vacuum polarisation and therefore charge screening. Different effective charges
are seen when measuring from different distances, i.e. at different energies.

The couplings, i.e. the charges, are not the only properties of a particle which need to be
renormalised, or reparameterised. There are also loops which lead to renormalised masses and
magnetic moments. It can be shown that, in addition, these diagrams do not contribute to
the renormalisation of the coupling constant (Ward identity). This ensures, that the charge
correction for particles of the same bare charge but different mass are exactly the same. The
finite corrections arising from diagrams with n loops are always proportional to

(
αR

em(0)
)n+1

,
in the electromagnetic case. However, loop corrections need to be taken into account for all
interactions.

The exact behaviour of the renormalised quantities with respect to the momentum transfer is
described by the so-called Renormalisation Group Equation (RGE):

∂α

∂Q
=

1

Q
β(α), (2.57)
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2.1 The Standard Model of Elementary Particle Physics

where the transferred momentum
√

q2 has been replaced by Q, and α denotes the renormalised
quantity. The dependence of α on Q is defined by the so-called beta function β(α). Beta
functions yielding the correction terms for n loops are then called n-loop-beta functions. The
one-loop beta function for quantum electrodynamics is given by

β(αR
em) =

2αR
em

3π
, (2.58)

which yields

αR
em(Q) =

αR
em(Q0)

1 − 2αR
em(Q0)
3π ln

(
Q
Q0

) , (2.59)

where a reference value Q0 has to be chosen to get rid of the cutoff ΛC . In the renormalisation
procedure, the value αR

em(Q0) is subtracted from αR
em(Q). The one-loop beta function for the

strong coupling αs in a theory with nf flavours is given by

β(αs) = −
(

11 − 2nf

3

)
α2

s

2π
(2.60)

⇒ αs(Q) =
αs(Q0)

1 + αs(Q0)
12π (33 − 2nf ) ln

(
Q2

Q2
0

) . (2.61)

2.1.3 Shortcomings of the Standard Model

The Standard Model has been extremely successfull over decades in the precise prediction of
experimental results. Nevertheless, there are strong indications that it is not a complete theory
of nature.

The Higgs particle, as introduced in the last section, is a fundamental scalar and receives mass
corrections from loop diagrams. If the Feynman diagram shown in Figure 2.3 is considered, it
can be shown that the corresponding correction is in principle given by

δm2
H ∝ λΛ2

C . (2.62)

In this formula, m2
H is the mass of the Higgs, i.e. m2

H = 2µ2 with µ taken from (2.39). This
correction is quadratically divergent with the cutoff ΛC . By electroweak precision data, a Higgs
mass at the order of 100 GeV is strongly favored [5]. If no new physics is assumed to exist
below the Planck scale MP ∼ 1019 GeV, ΛC was of the same order as MP , as the bare Higgs
mass had to be, as well, in order to obtain the physical mass of ∼ 100 GeV. Thus enormous
cancellations are necessary, which seems “unnatural”. This fine-tuning would affect all other
particles, as well, since their masses are generated by their couplings to the Higgs field. This
rather aesthetical flaw of the SM is referred to as the hierarchy problem.

Another issue is the unification of the gauge couplings at high scales. Electric and magnetic
forces are unified in the electromagnetic interaction, which is unified with the weak interaction
in the electroweak model. It is somehow expected that in a similar sense the strong force can be
unified with the electroweak force, such that all three forces are different manifestations of one
fundamental interaction. This grand unification is mostly expected to happen at scales > 1015

GeV. If the measured SM gauge couplings are extrapolated to these scales, such a unification
does not appear, as illustrated in Figure 2.4. At even higher scales, gravity might be included
and unified with the other forces, which can neither be provided by the SM, as it does not even
contain a quantum theory of gravity.
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2 The Standard Model of Elementary Particle Physics and its Minimal Supersymmetric Extension

�H H

Figure 2.3: A bosonic loop correction to the Higgs mass. In the SM, these Feynman graphs do
not have an opposite sign counterpart, which leads to quadratic divergences in the calculation of
the Higgs mass. This is known as the hierarchy problem, as the integrals for the loop corrections
are typically carried out up to the Planck scale and the Higgs mass is expected at the order of
100 GeV by electroweak precision data, such that the Higgs mass had to be fine-tuned in a way
that seems unnatural.

There are 25 parameters in the Lagrangian of the SM, such as masses and mixing angles. These
parameters are not predicted, but they rather need to be determined by experiment. Thus, the
SM does not explain why the masses and couplings are exactly what they are. For example, the
charge of a proton (net quark content uud) exactly cancels the charge of an electron. The SM
does not offer an answer to the question why this is the case.

In addition, it does not explain why the amount of matter in the universe exceeds the amount
of antimatter, as it is assumed that this asymmetry was not an initial condition of the universe.
There are processes in the SM which clearly distinguish between matter and antimatter, like
the leptonic decay of the long-lived neutral kaon, but these are not sufficient to explain the
asymmetry quantitatively.

The last point to be mentionend here is the existence of Dark Matter and Dark Energy. The
COBE and WMAP experiments showed that the total amount of visible matter in the universe
makes up only 5% of its overall energy content [19, 20]. About 20% Dark Matter and 75%
Dark Energy dominate the universe. Dark Matter can only be detected indirectly, e.g. by
microlensing effects. Any particles it is made of must interact weakly (if at all) or via gravity
only. In addition, in order to explain the large scale structure of the universe, Dark Matter needs
to be cold, i.e. non-relativistic. It must therefore consist of weakly interacting massive particles
(WIMPs). The only particles in the SM which undergo only weak interactions are neutrinos.
Due to their very low mass (O(eV)), they are relativistic and hence cannot be considered as
Cold Dark Matter. Black holes and brown dwarfs are also not sufficient to explain the assumed
amount of Dark Matter. As in addition the nature of Dark Energy is completely speculative,
the SM does not offer an explanation for 95% of our universe.

2.2 Supersymmetry

In the first section of this chapter, the fundamental importance of symmetries for the SM has
been pointed out. In particular, the claim for local gauge symmetry assures the photon to
be massless, such that from diagrams like the one shown in Figure 2.5(a) only logarithmic
divergences arise. These can be absorbed in renormalised constants, preserving the theory’s
prediction power. Chiral symmetry for m → 0 ensures the same for the electron self energy, as
shown in Figure 2.5(b). Thus, the masses of fundamental spin-1/2 particles and vector bosons are
“protected” from quadratic divergences. But there is no such symmetry in the SM that “saves”
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Figure 2.4: The running of the gauge-couplings in the Standard-Modell. If the SM was valid
up to energies at which quantum gravity is believed to provide significant contributions (1016

GeV), there would be no unification of the gauge-couplings. Although no strict reason can be
given, it seems somehow uncomfortable that a unification does not appear at some high scale.

the masses of fundamental scalars like the Higgs in a similar way. If a symmetry connecting
scalars with fermions or vector bosons existed, the “protection” for fundamental scalar masses
would be restored.

�γ γ

(a)

�e e

(b)

Figure 2.5: One-loop diagrams giving rise to mass corrections for a photon (a) and an electron
(b). For both particles, symmetries ensure the absence of quadratic divergences.

The question is, if such a symmetry can be realised in nature. It was shown by Coleman
and Mandula, that the only charges generating a symmetry transformation in a consistent 4-
dimensional theory, are Lorentz scalars or elements of the Poincaré group [21]. Now Lorentz
scalars do not affect the spin of a field when applied to it, and neither do the elements of the
Poincaré group, such that a symmetry between scalars and fermions or vector bosons seems
to be ruled out by the Coleman-Mandula theorem. As a matter of fact, this is not true, if
charges with spinorial Lorentz transformation behaviour are considered, as stated by the Haag-
Lopuszanski-Sohnius theorem [22]. If such generators Qa act on a particle field, the spin of
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2 The Standard Model of Elementary Particle Physics and its Minimal Supersymmetric Extension

this field is altered by 1/2, and if furthermore a series of other requirements is fulfilled, such a
symmetry would finally provide cancellations of the quadratic divergences in the calculation of
the masses of fundamental scalars. Supersymmetry (SUSY) is exactly that kind of a symmetry,
although the hierarchy problem was clearly not the motivation that lead to the intense theoretical
examination of this new symmetry.

This short discussion of supersymmetry is mainly based on [11, 23, 24].

2.2.1 The SUSY Algebra

SUSY connects fermionic and bosonic degrees of freedom. If a SUSY transformation Q acts on
a fermionic field, a bosonic field with the same quantum numbers except for the spin of course,
is obtained and vice versa:

Q|boson〉 = |fermion〉, (2.63)

Q|fermion〉 = |boson〉. (2.64)

Information about any symmetry can be obtained by looking at its associated algebra and the
irreducible representations of this algebra. Algebras associated to the “classical” symmetries are
Lie algebras, which only contain bosonic generators and whose Lie bracket is the commutator.
When fermionic generators are taken into account, the Lie bracket is the anticommutator. If,
like SUSY, a symmetry connects bosonic with fermionic fields, Lie superalgebras need to be
considered, which include both types of generators. The (anti)commutation relations for the
SUSY generators Qa and the space-time transformation generators Pµ are given by

{Qa, Qb} = {Q†
a, Q

†
b} = 0, (2.65)

[Qa, Pµ] = [Q†
a, Pµ] = 0, (2.66)

{Qa, Q
†
b} = (σµ)abPµ. (2.67)

The irreducible group representations of the SUSY algebra are chiral and gauge supermultiplets,
containing both fermionic and bosonic fields. The bosonic field in a supermultiplet is referred to
as the superpartner of the respective fermionic field (and vice versa). The commutation relation
(2.66) implies

[
Qa, P

2
]

= 0, (2.68)

which means that the particles in a supermultiplet have the same masses.
Although the focus in the next chapters will be on phenomenological aspects of SUSY, the

connection between SUSY and space-time transformations via (2.67) needs to be emphasised
in a few words. If SUSY, with generators Qa, existed, the concept of 4-dimensional spacetime
had to be extended to include ’fermionic’ degrees of freedom. Although the implementation of
SUSY necessitates the introduction of new particles, as will be described in the next chapters,
this extension of spacetime is the most radical implication of a supersymmetric theory.

2.2.2 A Basic SUSY Lagrangian Density

In this chapter only the final formulae for a supersymmetric theory are quoted, where the no-
tation of [24] is used. A more detailed and complete deduction of the formulae can be found
in [11, 23, 24], for example. After this short formal summary, in the next chapter more phe-
nomenological aspects of the Minimal Supersymmetric Standard Model (MSSM) are pointed
out.
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2.2 Supersymmetry

For chiral supermultiplets, consisting of left chiral fermionic fields χi, and complex scalar fields
φi, the changes in the fields when applying a SUSY transformation are given by

δφi = ǫχi, (2.69)

δ (χi)α = −i
(

σµǫ†
)

α
Dµφi + ǫαFi, (2.70)

δFi = −iǫ†σµDµχi +
√

2g (T aφ)i ǫ
†λ†a. (2.71)

For a gauge multiplet, consisting of a SM gauge field Aa
µ and its superpartner λa

α, the respective
transformations are

δAa
µ = − 1√

2

(

ǫ†σµλ
a + λ†aσµǫ

)

, (2.72)

δλa
α =

i

2
√

2
(σµσνǫ)α F

a
µν +

1√
2
ǫαD

a, (2.73)

δDa =
i√
2

(

−ǫ†σµDµλ
a +Dµλ

†aσµǫ
)

, (2.74)

in which

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfaβγAβ

µA
γ
µ, (2.75)

with the structure constants fαβγ . The non-propagating fields F and D, not to be confused with
the covariant derivative Dµ, have to be introduced to restore degrees of freedom balance between
the SM fields and their respective superpartners. These auxiliary fields can be completely
expressed as functions of the scalar fields φi.

For the complete Lagrangian density, in addition to the gauge interactions, interactions involv-
ing the gaugino and D fields have to be taken into account. All interactions are then determined
by the gauge groups and the so-called superpotentialW , which is an analytical, complex function
of the involved scalar fields and contains additional Yukawa couplings. A complete Lagrangian
density for a renormalisable supersymmetric theory containing chiral and gauge multiplets is
then given by

L = −∂µφ∗i∂µφi + iχ†iσµ∂µχi −
1

2

(

W ijχiχj +W ∗
ijχ

†iχ†J
)

−W iW ∗
i

− 1

4
F aµνFµνa + iλ†aσmuDµλ

a +
1

2
DaDa

−
√

2ga(φ
∗iT aχi)λ

a −
√

2gaλ
†a(χ†iT aφi) + ga(φ

∗iT aφi)D
a. (2.76)

In this formula, the T a denote the generators of the gauge transformations with the coupling
constants ga.

One implication of the anticommutation relations (2.67) is the extension of the concept of
space-time to include fermionic degrees of freedom, which are referred to as θ and θ∗ here,
following the convention of [23]. This allows for the formulation of a supersymmetric theory
in terms of superfields, which are used only for the formulation of the MSSM superpotential in
this thesis. Therefore, only the definition of a superfield is given here. For a supermultiplet,
containing a left chiral fermionic field χi(x) and a bosonic field φi(x), the corresponding superfield
is given by

Φi(x, θ) = φi(x) + θχi(x) +
1

2
θθFi(x). (2.77)
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2 The Standard Model of Elementary Particle Physics and its Minimal Supersymmetric Extension

2.2.3 The MSSM and the Resolution of SM Shortcomings

It was stated above, that, apart from the spin, the superpartner of a given field must have the
very same quantum numbers as the field itself. It is therefore not possible to combine only SM
particles to supermultiplets, which means that in a supersymmetric model new fields have to
be introduced. The superpartners of the SM fermion fields are called s(calar)fermions, whereas
the superpartners of the gauge bosons and the Higgs bosons are called gauginos (Higgsinos). As
in supersymmetric theories Yukawa interactions must not contain a complex scalar field and its
hermitian conjugate, two independent Higgs doublets are needed to give masses to the up-type
and down-type quarks. The complete particle content of the MSSM is shown in Tables 2.3 and
2.4, and in Figure 2.6.

The superpotential for the MSSM is given by

WMSSM = uyuQHu − dydQHd − eyeLHd + µHuHd, (2.78)

where the superfields as specified in Table 2.3 are used and family indices are implicitly included.
The Yukawa matrices yi define the masses and CKM mixings of the quarks and leptons, and
are mostly chosen to be zero except for the (3,3) component, due to the high masses of the third
generation particles in the SM. The superpotential (2.78) does not allow for lepton or baryon
number violation, although such terms could be introduced without spoiling gauge invariance or
SUSY. In order to avoid an a priori postulation of the conservation of these quantum numbers

Name Symbol spin 0 spin 1/2

squarks/quarks Q (ũL, d̃L) (uL, dL)

u ũ∗R ũ†R
d d̃∗R d̃†R

sleptons/leptons L (ν̃L, ẽL) (ν, eL)

e ẽ∗R e†R
Higgs, Higgsinos Hu ( H+

u , H0
u ) ( H̃+

u , H̃0
u )

Hu ( H0
d , H−

d ) ( H̃0
d , H̃−

d )

Table 2.3: The chiral supermultiplets in the MSSM. In this minimal supersymmetric extension
to the SM, each SM fermion is assigned to a bosonic (scalar) superpartner. In the table, the
supersymmetric partner of a SM fermion f is labelled f̃ . Although the sfermions’ chirality is not
defined, they “inherit” this index (R or L) from their SM partners. As the neutrinos are regarded
to be massless, only one sneutrino per SM neutrino (the ν̃L), is introduced. Finally, the Higgses
and their superpartners, the Higgsinos complete the set of chiral multiplets in the MSSM. These
are the only chiral multiplets, whose SM particles are scalars, while their superpartners are
fermions, as shown in the Table.

Name spin 1/2 spin 1

gluino/gluon g̃ g

winos/W bosons W̃±, W̃ 0 W±, W 0

bino/B boson B̃0 B0

Table 2.4: The gauge supermultiplets in the MSSM. The fundamental force carriers are grouped
together with their supersymmetric spin 1/2 partners and as for the SM fermions, the MSSM
superpartners of the SM bosons are labelled with a ∼.

18



2.2 Supersymmetry

by hand, which is not necessary in the SM, a new conserved, multiplicative quantum number,
namely R-parity, is introduced. This number is defined by

R = (−1)3(B−L)+2s , (2.79)

where B is the Baryon number, L the lepton number and s the spin. Squarks, sleptons, gauginos
and Higgsinos, from now on referred to as sparticles, therefore have odd R-parity (-1), while
their SM superpartners have even R-parity (+1). If R-parity was conserved, terms violating L
and B would be eliminated in the Lagrangian density. Furthermore, the lightest supersymmetric
particle (LSP) would be stable, it could only be produced in pairs at collider experiments, and an
odd number of LSPs would occur in any sparticle decay chain. Another consequence of R-parity
conservation is the stability of the proton, which would decay very quickly if the respective
Yukawa couplings were at the order of unity and R-parity was violated.

SUSY elegantly solves many of the known shortcomings of the SM. First to be mentioned
here is the hierarchy problem. The quadratic divergences in the calculation of the masses of
fundamental scalars in a supersymmetric theory can be expressed as

δm2 ∼
(
λscalar − g2

fermion

)
Λ2

C , (2.80)

where essentially

λscalar = g2
fermion, (2.81)

i.e. the quadratic divergences arising from scalar loop corrections are exactly cancelled by the
loop corrections including their fermionic superpartners. Two loop diagrams which cancel out
each other are shown in Figure 2.7.

Furthermore, if R-parity is conserved, the LSP might be an excellent candidate for Cold Dark
Matter. This requires it to be massive, colourless and electrically neutral. In many models, the
LSP is the lightest neutralino, which fits these requirements perfectly. A detailed analysis of
supersymmetric Dark Matter is provided in [25].

Figure 2.6: The particle content of the MSSM. Except for the Higgs, all SM particles, which
are shown on the left hand side, have already been discovered, while their superpartners on
the right hand side remain undetected, so far. The particle content shown here is the minimal
particle content of any supersymmetric extension to the SM. In principle, for each particle of
the SM, a new, supersymmetric version has to be introduced.
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Figure 2.7: A (a) bosonic and (b) fermionic loop contribution to the Higgs mass. From both
diagrams, quadratic divergences arise if the calculation of the Higgs mass is carried out. If the
boson and fermion appearing in the above Feynman diagrams were superpartners of each other,
their divergences would cancel out each other, such that the Higgs mass would remain finite
without any fine-tuning.

The next issue SUSY solves is the unification of the gauge couplings at scales mU ≈ 1016

GeV. This is shown in Figure 2.9.

Now, due to (2.68), SUSY cannot be an exact symmetry, as none of the sparticles has been
experimentally observed, yet. If SUSY is realised in nature, it is therefore expected to be
spontaneously broken, i.e. the symmetry is invisible in the vacuum state. Nevertheless, there
is no evidence on how SUSY might spontaneously be broken, such that terms are added to the
Lagrangian density by hand which explicitly break SUSY. In fact, the actual SUSY breaking
must take place in a hidden sector, which interacts very weakly only with the visible MSSM
sector. SUSY breaking is mediated between these two sectors by some flavour blind interaction,
as illustrated in Figure 2.8. The soft SUSY breaking terms in the Lagrangian density are then
usually considered as a low energy parametrisation of the ignorance of the exact SUSY breaking
mechanism. There are strong restrictions to these terms, as they must not spoil renormalisability,
Lorentz invariance or gauge invariance. A Lagrangian density for a model with explicitly broken
SUSY is then given by

L = LSUSY + Lsoft, (2.82)

in which LSUSY is the unbroken SUSY Lagrangian density (2.76) and Lsoft contains the SUSY
breaking terms. The attribute soft refers to the fact that in addition to the mentioned restrictions
on the breaking terms, these terms should neither reintroduce quadratic divergences in the
calculation of loop diagrams, which requires them to be of positive mass dimension. Only terms
leading to corrections of the form

δm2 ∼ m2
soft log

(
ΛC

msoft

)

, (2.83)

in which msoft is the scale for the soft SUSY breaking terms, may remain. For the solution of the
hierarchy problem, msoft ∼ 1 TeV is strongly favoured. Although the constraints on the SUSY
breaking terms are rather strict, more than 100 parameters are needed to describe them in their
most general form, and no explanation for the mass scale msoft is provided by the theory.

The allowed soft SUSY breaking terms for the MSSM can be divided into five sectors. Four
of these sectors contain mass terms for the gauginos, squarks, sleptons and Higgses, and the last
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(Hidden sector)
(Visible sector)

Supersymmetry
breaking origin

     MSSMFlavor-blind

interactions

Figure 2.8: An illustration of the SUSY breaking mechanism. The actual breaking of the
symmetry is assumed to take place in some hidden sector (left hand side), which is not directly
accessible. Via flavour blind interactions, the SUSY breaking is mediated to the visible sector
on the right hand side. There are various ideas of how the breaking could be mediated. The
most famous scenarios feature anomaly mediated (AMSB), gauge mediated (GMSB) or gravity
mediated (mSUGRA) SUSY breaking.

contains triple scalar couplings, such that essentially

Lsoft = − 1

2

(

M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + h.c.
)

− Q̃†m2
QQ̃− L̃†m2

LL̃− ũm2
uũ

† − d̃m2

d
d̃
†
− ẽm2

e ẽ
†

− m2
Hu
H∗

uHu −m2
Hd
H∗

dHd − (bHuHd + h.c.)

−
(

ũauQ̃Hu − d̃adQ̃Hd − ẽaeL̃Hd + h.c.
)

, (2.84)

where h.c. means the hermitian conjugate. These terms include the masses and mixings between
the sparticles. As an example, the gluino mass is essentially given by M3. For the Higgsinos and
the winos/bino, which are the superpartners of the electroweak gauge bosons, this is not the
case. For non-zero vacuum expectation values (vev) of the neutral scalar Higgs fields, mixings
between the neutral Higgsinos and the bino/winos are generated by EWSB and the µ-terms
in the Lagrangian density. As a consequence, the gauge eigenstates of these particles are not
their (physical) mass eigenstates. The masses of these mass eigenstates can be determined by
diagonalizing the respective mass matrices. For the neutral Higgses, the wino and the bino, the
mass eigenstates are called neutralinos. The neutralino mass matrix is given by

Mχ̃0 =







M1 0 −cβsWmZ sβsWmZ

0 M2 cβcWmZ −sβcWmZ
−cβsWmZ cβcWmZ 0 −µ
sβsWmZ −sβcWmZ −µ 0






, (2.85)

where tanβ = vu/vd is the ratio of the vevs of the two Higgs doublets, and cβ = cosβ, sβ = sinβ,
cW = cos θW , sW = sin θW . The quantity tanβ can be calculated from the parameters in the
Lagrangian, but it is mostly used as a parameter itself, replacing one of the other parameters.
The matrix (2.85) can be diagonalised by unitary matrices N, and the mass eigenstates χ̃0

i are
calculated from the gauge eigenstates via







χ̃0
1

χ̃0
2

χ̃0
3

χ̃0
4







= N







B̃

W̃ 0

H̃0
d

H̃0
u






. (2.86)

In principle, the same can be applied to the charged gaugino/Higgsino sector, but this time
two distinct matrices are needed for the diagonalisation of the chargino mass matrix, as this
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2 The Standard Model of Elementary Particle Physics and its Minimal Supersymmetric Extension

matrix is not orthogonal. For the sfermion sector the situation is even more complicated in the
MSSM. Generation and flavour mixing terms are in principle allowed by the theory, which would
introduce complex 6 × 6 mixing matrices in the charged slepton and the squark sectors.

Although the unbroken SUSY Lagrangian density contains only one additional parameter,
namely the Higgs mass parameter µ, in the broken case a total of 105 additional parameters are
put into the Lagrangian density via (2.84). However, by experiments, there are strong restrictions
on all parameters, which by making certain assumptions, allow for a dramatic reduction of the
dimension of the parameter space, partly corresponding to a substantial simplification of mixing
matrices. One such a model is the minimal supergravity (mSUGRA) model.
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Figure 2.9: The diagram shows the running of the gauge-couplings in the MSSM. Within
their theoretical uncertainties, the three coupling constants are unified at energy scales & 1016

GeV. The exact value depends on the actual breaking mechanism and the parameters of the
SUSY Lagrangian density. The unification of the gauge couplings at a high-scale is one of the
convincing arguments to consider SUSY seriously. However, there is no evidence that such a
unification has to appear in nature, but it seems nicer to a certain extend.

2.2.4 The mSUGRA Model

In the mSUGRA model SUSY breaking is mediated between the hidden and the visible sector
via gravity. This introduces non-renormalisable terms in the effective Lagrangian density, which
are suppressed by the Planck mass MP , however. By assuming a ’minimal’ form for certain
terms in that Lagrangian density, the dimensionality of the MSSM parameter space is broken
down to 5.

One of the remaining parameters is the ratio of the Higgs vevs, tanβ. The sparticle masses
are covered by only two parameters, reflecting the unification of all gaugino masses and all
sfermion masses at a high scale, typically referred to as GUT (Grand Unified Theory) scale.
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These parameters, m0 and m1/2, are connected to the MSSM parameters by

M3 = M2 = M1 = m1/2 at GUT scale, (2.87)

m2

Q̃
= m2

ũ
= m2

d̃
= m2

L̃
= m2

ẽ
= m2

01 at GUT scale, (2.88)

in which 1 is the unit matrix. Furthermore

m2
Hu

= m2
Hd

= m2
0. at GUT scale (2.89)

The fourth parameter A0 unifies the trilinear couplings at the GUT scale, namely

au = A0yu,ad = A0yd,ae = A0ye at GUT scale, (2.90)

in which the Yukawa matrices from the superpotential (2.78) occur. The GUT scale is typically
in the order of 1016 GeV (see figure 2.9). Finally, the fifth parameter is a discrete parameter,
namely the sign of the Higgs mass parameter, sign µ, which can only acquire values ±1 while
in principle A0 ∈ R, mi, tanβ ∈ R

+.
Despite their degeneracy at the GUT scale, the sparticles acquire different masses at low

(EWSB) scale, QEWSB ∼ mZ , as their charges associated to the gauge interactions differ.
If their Yukawa couplings are neglected, the one-loop beta functions for the first and second
generation squarks as an example are given by

Q
dm2

Q̃1,2

dQ
=

(

−32

3
α3M

2
3 − 6α2M

2
2 − 2

15
M2

1

)

/4π, (2.91)

Q
dm2

ũ1,2

dQ
=

(

−32

3
α3M

2
3 − 32

15
M2

1

)

/4π, (2.92)

where the rescaled gauge couplings

α1 =
5

3

g′2

4π
, (2.93)

α2 =
g2

4π
and (2.94)

α3 =
g2
s

4π
(2.95)

have been used. The most general form for the sfermion masses at QEWSB in the mSUGRA
model is thus given by

m2
f̃i

= m2
0 + κi

1K1 + κi
2K2 + κi

3K3, (2.96)

where the coefficients κi
j depend on the gauge quantum numbers of the fermion, and the Kj

are positive values with Kj ∼ m2
1/2. As the slepton masses do not receive corrections by strong

interaction loops, i.e. κl̃
3 = 0, the squarks are generally heavier then the sleptons. It is for

essentially the same reason, that the superpartners of right chiral SM fermions are lighter than
the respective partners of the left chiral SM particles, as the former do not interact weakly in
contrast to the latter. The calculation for the third generation sfermions are more complex,
as additional terms due to their non-vanishing Yukawa couplings enter in the beta functions.
These induce a mixing between the left chiral and right chiral superpartners of the top quark,
the bottom quark and the tau lepton, such that in contrast to the first and second generation,
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2 The Standard Model of Elementary Particle Physics and its Minimal Supersymmetric Extension

Figure 2.10: The proton structure. At low energies (i.e. at high distances), the proton seems
to be a pointlike particle with electric charge +1. However, deep inelastic scattering experiments
at the Stanford Linear Accelerator Center (SLAC) and the Deutsches Elektronen-Synchrotron
(DESY) revealed the substructure of the proton, which if examined at not too high energies,
seems to consist of two up quarks and one down quark, which are kept together by the strong
interactions via gluons (left side of the Figure). The spin of the proton and its quark constituents
is illustrated with an arrow here. If the distance is decreased, a dynamic amount of sea-quarks
and gluons becomes visible, as depicted on the right hand side.

the mass eigenstates are not the gauge eigenstates f̃R and f̃L. The mass eigenstates are usually
referred to as f̃1 and f̃2 in these cases, and information about the actual mixing is mathematically
fixed in mixing matrices, as usual. In the stau and sbottom sector, the mixing mainly depends
on tanβ, while the large value of mtop dominates the mixing in the stop sector. Beta functions
for the gaugino masses and the Yukawa couplings can be found in [23, 24], and will not be
quoted here.

Finally a short summary of SUSY phenomenology at hadron colliders, especially at proton-
proton colliders is given in the following. Protons are bound states of three valence quarks and
a fluctuating number of sea quarks and gluons, see Figure 2.10, such that the main production
mechanisms for sparticles at proton-proton colliders are strong interactions. As in mSUGRA
models, due to (2.96), squarks, and for essentially the same reason gluinos, are expected to have
masses ∼ 1 TeV, high centre of mass energies are needed to produce the sparticles at significant
rates.

The dominating Feynman diagrams for sparticle production are shown in Figure 2.11. In most
models, the squarks and gluinos are unstable and will very quickly decay via long decay chains
with characteristic final states. Two decay chains, which are typical for the models studied in
the remainder of the present thesis, are shown in Figure 2.12.

Of course it strongly depends on the exact model of SUSY breaking and the respective param-
eter values what kind of decays are allowed, and what decays are suppressed. This does not only
depend on the actual mass hierarchy, but also on the exact composition of the neutralinos and
the heavy flavour squarks and sleptons. For example, the second lightest neutralino in Figure
2.12 might be mainly wino, such that a decay into a right chiral slepton and a lepton is strongly
suppressed in comparison to the decay into a left chiral slepton and a lepton, if the latter is
kinematically allowed.

It can be deducted from Figure 2.12, that a typical SUSY final state at hadron colliders
contains a lot of different particles, namely quarks and gluons which form jets in the detector,
charged leptons, neutrinos and, depending on the model, indetectable LSPs. The reconstruction
of such decay chains and the extraction of observables is thus quite a complex enterprise, in
particular because the production cross sections for SUSY in most scenarios are much lower
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Figure 2.11: SUSY production mechanisms at hadron colliders. Depending on the energy and
the type of hadrons used for the collisions, (a) gluon-gluon scattering, (b) gluon-gluon fusion,
(c)-(e) quark-gluon scattering or (f) quark-antiquark annihilation will provide the dominant
contributions to the total SUSY cross sections. However, the dominant production processes
are strong interactions involving t-channel gluino/squark exchange or an s-channel gluon/quark
exchange as shown in the Feynman diagrams. There are also possibilities to produce sparticles
weakly, but as these mostly play only a minor role at hadron colliders, the respective Feynman
diagrams are not shown here.

than those for relevant background processes. A sophisticated detector at a high energy collider
is therefore needed in order to discover SUSY experimentally, and precision measurements are
needed to find out the actual SUSY breaking mechanism. Before such a collider and detector
are introduced, the basic problem of SUSY parameter estimation is now pointed out.
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Figure 2.12: Two typical SUSY decay chains at hadron colliders. A gluino is produced, which
typically decays into a squark and a quark. As shown in (a), this squark may decay into another
quark of the same flavour as the first quark, and and the second lightest neutralino, which
may decay into a slepton and a lepton. Finally, the slepton decays into the lightest neutralino,
which is the LSP here, and another lepton of the same flavour and opposite charge. In (b), a
different decay channel of the squark is shown. Here, it decays into a quark of different flavour
and a chargino, which decays into a W and the LSP. Finally, the W may decay hadronically or
leptonically (as shown here). In both cases, two jets and a large amount of missing transverse
energy, together with one or two leptons would be observed.
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3 Introduction to Inverse Problems

In this chapter the problem of extracting model parameters from measured observables is de-
scribed. A basic introduction given in the first section by means of a simple example from
classical mechanics is followed by a brief overview on the extraction of SUSY Lagrangian pa-
rameters from possible future experimental data.

3.1 A Simple Example from Classical Mechanics

For a classical, pointlike particle of known mass m, which can move without friction along the
x-axis and which is attached to a spring with strength k, the Lagrangian is given by [26]

L = Ekinetic − Epotential =
m

2
ẋ2 − k

2
x2. (3.1)

(3.2)

This yields the equation of motion [26]

mẍ = −kx. (3.3)

The system is sketched in figure 3.1. Given the initial condition

x(t = 0) = xmax, (3.4)

the trajectory of the particle is

x(t) = xmax · cos (ωt) . (3.5)

If the numerical value of the spring constant k is of interest but unknown, the frequency ω can
be experimentally determined. It can be connected to the spring constant by inserting (3.5) into
(3.3):

−mω2xmax cos (ωt) = −kxmax cos (ωt)

⇒ k = m · ω2 (3.6)

This equation can be solved uniquely, since the square of ω and the mass m of the particle are
uniquely determined. m can be determined before measuring ω by applying a known force and
measuring the acceleration of the particle, or by simply calibrating the mass scale by setting
m = 1 mass unit. Thus, by measuring ω, the spring constant k, which occurs as a parameter in
(3.1), can be unambiguously extracted from one measurement. The uncertainty on k can then
be calculated from the uncertainties on m and ω. With the knowledge of the numerical value of
k, precise predictions can be obtained. For example, the frequency ω′ for a particle of mass m′

attached to the same spring can be predicted, or the mass m′ can be determined by measuring
ω′.

Precise knowledge of the value of k is therefore advantageous, and it can be obtained by a
one-to-one mapping between the measured observables and the parameter itself as it occurs in
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k

m

Figure 3.1: A single harmonic oscillator with spring constant k and mass m. The eigenfre-
quency of this system can be measured, and from the measurement the fundamental parameter
k can be deduced.

the Lagrangian (since ω ≥ 0 physically, (3.6) is indeed a one-to-one mapping, although it is
quadratic in ω).

The same procedure can be applied to a second harmonic oscillator with mass M and spring
constant K, where the frequency Ω is measured and the parameter K can be extracted from
this measurement. But the situation changes if a physical system like the one shown in figure
3.2 is considered, which is a system of two coupled harmonic oscillators.

A mass m1 is attached to a wall via a spring with constant k1 and to a second mass m2 via
a spring with constant k12. The mass m2 is itself attached to another wall with a spring of
strength k2. If it was possible to measure only the eigenfrequencies of this system, which can
be calculated as functions of the parameters mi, ki and k12 [26],

ω2
E,± =

1

2m1m2
(m1k2 +m2k1 + (m1 +m2)k12)

±
√

1

4m2
1m

2
2

(m1k2 +m2k1 + (m1 +m2)k12)
2 − k1k2 + (k1 + k2)k12

m1m2
, (3.7)

the three k’s cannot be uniquely determined even if m1 and m2 are known, since equations
(3.7) are not invertable with respect to these. The coupling between the two oscillators has
introduced no additional observable but one additional parameter in the Lagrangian. Without
further knowledge, these parameters cannot be extracted from the available measurements.

Of course, additional measurements for the coupled oscillators can be easily performed, and
the situation is different for the physics discussed in this thesis. But the example shows in
principle the nature of the so-called inverse problems. Any model describing a given physical
system contains a certain number of parameters. All possible measurements in the physical
system can then be expressed in terms of the parameters. But the reverse is not always possible,
especially when couplings between different sectors of the physical system are introduced. In
addition, most inverse problems in physics can not be solved by simply increasing the number
of measurements until it equals the number of parameters in the model. Highly non-linear
equations show up, which further complicate the extraction of the correct parameters.

Nevertheless, there are ways to extract the parameters if enough experimental data is col-
lected. One approach, which is referred to as a bottom-up-scenario [27], uses approximations to
exploit invertable first-order relations, for example. In some cases, the parameter space and the
observables can be separated into independent subspaces, such that to first order any couplings
between the subsectors can be set to zero. The actual entanglement of the subsectors is then
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k1
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Figure 3.2: Two harmonic oscillators, which are coupled via a third spring. As the system
shown in this figures has only two eigenmodes, the available measurements do not suffice to
determine the parameters at a first view.

taken into account in an iterative way. In the above example, if the coupling k12 is small, it
can be neglected in the first step of the calculation. Then, the values for k1 and k2 can be
extracted, as ω1 is only connected to k1 in this case, but not to k2 and vice versa. With the
first order values, in an iterative procedure more accurate determinations taking into account
non-vanishing values of k12 are obtained.

Another approach is a so called top-down scenario [27]. Given some reasonably chosen start
values for the parameters, the corresponding values for the observables are computed and com-
pared to the actual measurement. By using adequate fitting procedures, the parameter values
describing the measurements best can be extracted.

When such techniques are applied in order to determine the parameters of a given physics
model, there is always a risk to take wrong decisions. Especially if the parameter space is high-
dimensional, there might exist more than one set of parameters that describe the given set of
observables well within the experimental and theoretical uncertainties. The results obtained by
following a top-down approach may then vary significantly if different start values are used.

3.2 The Inverse Problem for SUSY

The parameter space of the MSSM is a paradigm for a high-dimensional parameter space. In
addition to the SM parameters, the MSSM Lagrangian contains more than 100 free parameters.
The mass spectrum of the SUSY particles, their couplings, mixings and branching fractions,
which partly constitute the set of physical quantities that are measured at collider experiments,
can definitely be calculated from these parameters. In practice, since the calculation is done
only to finite order, there are, of course, theoretical uncertainties on the computed values.

The inverse calculation cannot be done directly, especially when some masses, couplings and
branching fractions are unknown and the uncertainties on the measured observables are large.
At tree level, the parameter space and the observable space can partly be divided into uncoupled
subspaces, but once loop corrections are included, the mass of a particle can only be calculated
by taking into account nearly all parameters via mainly non-linear relations [27].

SUSY has not been observed experimentally, yet, such that the reconstruction of the parame-
ters of a supersymmetric Lagrangian density has not been performed on direct SUSY measure-
ments, yet. Nevertheless, if SUSY is realised in nature, the typical mass scale for sparticles is
expected be in the order of 1 TeV, which means that observables directly related to SUSY will
be available from present and future experiments at the Large Hadron Collider (LHC) [28–30]
and the planned International Linear Collider (ILC) [31–34]. In a certain sense the situation
is then similar to the one described in the first section of this chapter. Knowledge about the
parameters of the SUSY Lagrangian, corresponding to the values of k1, k2 and k12 would help
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to make predictions, one of which is the fraction of supersymmetric cold dark matter in the uni-
verse. For the determination of these parameters, the observables provided by the experiments
at the LHC and ILC can be used, like the frequencies ωE,±. Since SUSY is an extension to the
SM, the complete Lagrangian would contain the SM parameters as well. Fits of the Lagrangian
strongly benefit from prior knowledge about these parameters, which is available from previous
experiments. The strong and electromagnetic coupling constants αs and αem are examples for
such parameters, and although the analogy is of course not perfect, this corresponds to the
masses m1 and m2 in the first section of this chapter. Using tree level estimates is on par with
setting k12 = 0, whereas taking into account loop corrections would be analogous to setting k12

to non-zero values.
Once enough observables have been measured with a sufficient precision, they can be used for

fits of SUSY Lagrangians. In R-parity conserving SUSY models with a dark matter candidate
LSP, this is always produced in pairs at the LHC and the ILC and escapes the experiments unde-
tected. In addition, full information about the initial state is not available for the proton-proton
collisions at the LHC, because protons have a substructure and it is actually the constituents of
the proton (quarks and gluons) which are scattered. This makes direct measurements of spar-
ticle masses difficult. Other observables, which are accessible more easily, are being examined.
Edges in the spectra of detectable decay products can be expressed in terms of the sparticle
masses. These edges, as well as shapes of the respective distributions, production rates and
ratios of branching fractions provide a fair basis for an extraction of the Lagrangian parameters.

If a top-down approach is being followed, programs are needed to predict the values of these
observables for a given set of parameter values. Approximations and initial estimations need
to be done during the calculation of the predictions and as different programs handle these
approximations and estimations in a different way, they provide similar but not exactly equal
predictions, thus leading to different best-fit parameter values. In order to quote reasonable
uncertainties on fit results, amongst other things, these differences have to be studied.

The intention of the study presented in this thesis is to provide a first insight into systematic
shifts of best-fit parameters for fits to SUSY Lagrangians with the program Fittino [35] when
using either SPheno [36], SoftSUSY [37] or SuSpect [38] for the prediction of the SUSY mass
spectrum during the fitting procedure.

For this purpose, the measurement of one specific SUSY observable in a best case scenario
is studied first. This observable, which is a kinematic endpoint in the invariant mass spectrum
of the visible products of a certain sparticle decay chain, together with a number of other toy
measurements is then used to fit mSUGRA Lagrangians with each of the three available spec-
trum calculators, looking for possible problematic parameter regions, i.e. regions with notable
differences in results.
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4.1 The Large Hadron Collider

The Large Hadron Collider is a hadron-hadron collider, located at the European Organization for
Nuclear Research (CERN) near Geneva, Switzerland. Approved by the CERN council in 1994,
the construction started in 2000, after the shutdown of the Large Electron Positron Collider
(LEP). Making use of LEP’s infrastructure, especially the 27 km long circular underground
tunnel, the first start-up could be performed in September 2008. The description provided here
relies on [28–30].

The machine can accelerate protons to energies up to 7 TeV, using Radio Frequency (RF)
cavities. 1, 232 superconducting cryodipole magnets, providing a nominal magnetic field of 8.33
T at a current of 11, 850 A, bend the protons around the beampipe. The dipoles, based on Nb-Ti
Rutherford cables, operate at a nominal temperature of 1.9 K, for which 96 tons of superfluid
helium are needed. The focusing of the beam is realised by a number of multipole magnets and
the RF cavities.

The given specifications of the LHC allow for proton-proton collisions at a centre of mass
energy up to 14 TeV. There are up to 2808 bunches inside the storage ring, divided into one
beam circulating clockwise and one beam circulating counterclockwise. Each bunch contains
up to ∼ 1.15 × 1011 protons. At the maximum luminosity, a bunch crossing occurs every 25
ns at the 8 interaction points (IPs), each of which induces about 20 proton-proton interactions
on average. This corresponds to an instantaneous luminosity of 1.0 × 1034 cm−2s−1. The total
cross section expected for 14 TeV proton-proton interactions is 100 mbarn (40 mbarn elastic
scattering and 60 mbarn inelastic scattering).

The LHC is not only designed for colliding protons with protons, but also lead ions with lead
ions. The Pb82+ ions are accelerated up to 2.76 TeV/nucleon leading to a total centre of mass
energy of 1, 148 TeV. The design luminosity when operating in ion mode is 7 × 107 cm−2s−1,
with 592 bunches of ions in the ring and a bunch spacing of 100 ns.

The design of the LHC is chosen in a way that enables physicists working at its six major
experiments to explore energy regions which were so far unreached under laboratory conditions.
ATLAS (A Toroidal LHC ApparatuS) [39, 40] and CMS (Compact Muon Solenoid)[41] are
multipurpose detectors, designed for a comprehensive analysis of any kind of inelastic proton-
proton interactions. At the energy scale accessible with the LHC, new physics is expected to
be discovered. The LHCb (LHC beauty) [42] experiment is designed for b-physics, in which
new insights about CP violation and baryon asymmetry may be found, whereas ALICE (A
Large Ion Collider Experiment) [43] is a detector focusing on measurements of the quark-gluon
plasma which is expected to be experimentally created for the first time in the Pb-Pb collisions,
increasing the knowledge about the very early universe. With TOTEM (TOTal Elastic and
diffractive cross section Measurement) [44], amongst others measurements, precise information
about the LHC luminosity is obtained. Finally, with LHCf (LHC forward)[45], which consists of
two smaller detectors positioned near ATLAS, cascades similar to cosmic rays in the atmosphere
can be examined under laboratory conditions for the first time. Figure 4.1 shows a schematic
overview of the LHC and the associated experiments.
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Figure 4.1: An overview of the Large Hadron Collider, situated ∼ 100 m underground at
CERN, near the city of Geneva in Switzerland. The ring has an overall circumference of about
27 km, most of it lying below French ground. The major experiments ATLAS, CMS, ALICE
and LHCb, as well as the Super Proton Synchrotron(SPS), which is an important part of the
LHC injection chain, are shown in the figure.

Current Status Due to a malfunctioning bus connection between two magnets and a re-
sulting helium leak, the machine was severely damaged on 19th September 2008 [46]. Repairs
and improvements to avoid similar accidents in the future took more than one year. Finally,
on November 20th 2009, the first proton beams were back in the LHC, and only three days
later, on November 23rd 2009, the first proton proton collisions were recorded at the four main
experiments at a centre of mass energy of 900 GeV. A ramp to 2.36 TeV centre of mass energy
succeeded little later, and a run at

√
s = 7 TeV is planned for 2010 and 2011 until all major

experiments have collected a total amount of 1fb−1 of data. Collisions at the design centre of
mass energy of 14 TeV are expected by 2013.

4.2 The ATLAS Experiment

The ATLAS detector is one of the two multipurpose experiments at the LHC. It is designed to
examine any inelastic proton-proton scattering processes. This includes a rediscovery of already
known SM processes like production of the heavy gauge bosons Z0 and W± and top quark pair
production, as well as searches for the Higgs boson, supersymmetry, extra dimensions and any
other kind of new physics, which is expected to show up at LHC’s centre of mass energy. To
allow for such analyses, ATLAS must be able to collect information about any (meta)stable
particles that might originate from the processes to be studied. Some of these particles, in
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particular electrons and muons, can be seen directly in the detector. In contrast, quarks build
(unstable) hadronic bound states too quickly to be observed directly. Thus information about
coloured particles can only be obtained by looking at hadronic jets in the detector. Finally there
are particles which completely escape detection. The only elementary particles which belong
to this group and are known so far are the neutrinos. They carry away a certain amount of
energy and momentum from the detector, which then misses in the respective balance. In the
following, after a short overview, the different subsystems, which capacitate ATLAS to fulfill all
these requirements, are explained. The description provided here relies on [39, 40].

4.2.1 Overview

Figure 4.2 shows a scheme of the ATLAS detector with its subsystems. With a length of roughly
46 m, a radius of 22 m and an overall weight of 7, 000 tons, ATLAS is the biggest but not heaviest
experiment at the LHC. It has a spatial coverage of ∼ 4π and a typical onion shell design, which
allows the detector to meet the requirements mentioned in the last paragraph, as shown in figure
4.3. In the Inner Detector (ID) the tracks of charged particles can be measured accurately. Next
to the ID, a solenoid magnet and, behind that, an electromagnetic liquid argon calorimeter (LAr
EM calo) are located. Behind that, in the barrel region, the hadronic tile calorimeter (TileCal)
is situated. In addition to the barrel calorimeters, an electromagnetic and a hadronic endcap
calorimeter are installed. The overall dimensions of ATLAS are defined by the muon chambers,
which form the outermost part of the detector. The magnetic fields needed to reconstruct the
momenta of charged particles are provided by a central solenoid (CS) for the ID and a system
of three toroids for the muon spectrometer. Due to the high luminosity it is impossible to store
information about every event and a trigger system is needed to identify and store interesting
events.

Before the subsystems of ATLAS are described in more detail, the coordinate system used is

Figure 4.2: An overview of the ATLAS detector. The main subsystems are labelled. Between
the left hand side muon detectors and the main barrel of the detector, two persons are shown
to illustrate the enormous dimensions of the experiment.
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Figure 4.3: This schematic picture illustrates how the onion shell structure of modern multi-
purpose detectors allows for the reconstruction of nearly all known (semi)stable particles. Dashed
lines denote invisibility of particles in the respective detector parts. As shown, an electron leaves
hits in the tracker and creates an electromagnetic shower in the electromagnetic calorimeter. If
such a shower is found in the calorimeter without an associated track, it is most likely to orig-
inate from a photon. Charged hadrons can be identified by entries in the electromagnetic and
hadronic calorimeters with an associated track in the inner detector, while neutral hadrons only
deposit their energy in the hadronic calorimeter. This is exemplarily shown for a proton and
a neutron, here. Muons, which are stable on the detector scale, are the only particles which
are expected to leave tracks in the muon chambers. However, it may happen that the content
particles of a jet are not fully stopped in the calorimeter and cause hits in the muon chambers,
too (punch through). Of course, as shown here, muons can also be seen by the inner detector,
such that for precise muon reconstruction the combined information of the inner tracker and
the muon system may be used. The pictures shows also a neutrino, which escapes the detector
without leaving any entries in the calorimeters or any tracks.

now explained. The beam going into counterclockwise direction defines the positive z-axis. The
positive x-axis points towards the centre of the LHC ring, as the positive y-axis points upwards
from the IP. The azimuthal angle φ is defined in the range of [π,−π], with φ = 0 corresponding
to the positive x-axis and φ = π/2 corresponding to the positive y-axis. Instead of the polar
angle θ defined with respect to the positive z-axis, the pseudorapidity η = − ln tan θ

2 is used, as
differences in this variable are Lorentz invariant. Since the initial conditions in hadron-hadron
collisions are unknown along the beam axis, projections on the x-y plane are used for some
quantities. These are referred to as transverse quantities, like the transverse momentum and
energy.
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4.2.2 Inner Detector

The purpose of the ID is the accurate vertexing and measurement of tracks and momenta. In
order to provide low uncertainties, the ID must have a high granularity, as it is situated next to
the IP. In addition, the ID has to be made up of radiation hard material, since the innermost
part of it is located at a distance of 5 cm from the beampipe, facing over 300 kGy of ionising
radiation and O(1014) neutrons per cm2 in ten years of LHC operation. The ID is divided into
a barrel, placed in parallel around the beampipe and one endcap on each side, perpendicular to
the z-axis. It has an overall length of 7 m with a radius of 1.15 m.
Three subsystems, as seen in figure 4.4 enable the ID to measure particle tracks and momenta
with a high precision. Particles originating from the IP first pass the pixel detector. Behind that,
the SemiConductor Tracker (SCT) is located. In addition to these two discrete subdetectors,
the outermost part consists of a continuous transition radiation tracker (TRT).

(a) (b)

Figure 4.4: The ATLAS inner detector, which consists of the pixel detector, the semiconductor
tracker and the transition radiation tracker. (a) shows a longitudinal cross-section of the ID,
while (b) shows a transversal cross-section and the radial distance of the separate detector
parts from the beampipe. From both pictures, the relative vicinity of the pixel detector to the
beampipe with respect to the other ID subsystems can be seen.

The pixel detector, which is the ID subsystem closest to the beampipe, consists of three layers
of silicon n-in-n pixels in the barrel at radii 5 cm, 10 cm and 13 cm, and three additional disks in
the endcap region at each side, covering radii from 11 cm to 20 cm. 1, 800 modules with a total
of 80 million pixels are installed. This high granularity ensures an excellent precision over the
covered solid angle. In order to achieve a maximum spatial coverage, bump bonding techniques
have been used to connect the active material to the readout electronics. The pixel detector has
a resolution of 12 µm in Rφ for both barrel and disks, and 66 µm (77 µm) in z for the barrel
(disks). The pixel detector covers an η-range of ±2.5.

The second part of the ID, the SCT, consists of four double layer silicon microstrip detectors.
One module of the SCT contains four p-on-n silicon detectors. In the barrel, two pairs of wire-
bonded, 12.8 cm long strips are attached to another with a respective angle of 40 mrad, with one
of them parallel to the beampipe. The pitch between two strips is 80µm. The endcap modules
are constructed in a similar way, but with one of the strips being aligned radially. The SCT
provides a spatial resolution of 16 µm in Rφ and 580 µm in the z-direction. It hast 6.2 million
readout channels and covers an η-range of ±2.5 (barrel ±1.4, endcap wheels ±(1.4 − 2.5)).
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Finally, the TRT contains 50, 000 straw tubes in the barrel region, and 320, 000 radial straws
in the endcaps, each of which is 4 mm in diameter and filled with a mixture of CO2, CF4 and Xe.
Gold-plated W-Re wires ensure a fast response. While the first two parts of the ID make use of
the ionisation of depleted silicon by charged particles, the TRT works as a gas tube detector and
furthermore exploits another effect. This is the emission of transition radiation when a particle
crosses the boundary surface between two materials with different dielectric constants. As the
intensity of the transition radiation is different for different types of particles, in particular
electrons and pions here, the TRT helps to distinguish between them. Each channel of the
TRT has a spatial resolution of 170 µm and two independent detection thresholds to distinguish
between tracking hits and actual transition radiation hits. Typically, the TRT measures 36 hits
per track, providing good pattern recognition and momentum resolution.

4.2.3 Calorimeters

The ATLAS calorimeter system, whose main purpose is to measure the energy of particles, and
which is therefore essential for the determination of the missing transverse energy, consists of
four parts. For the detection of electromagnetic interacting particles, in particular electrons and
photons, the electromagnetic calorimeter is inbuilt. These particles interact with the detector
material, creating a shower of more photons and electrons due to bremsstrahlung and pair
production. The electromagnetic calorimeter is made of a barrel part and an endcap on each side.
Hadronic particles are measured with the hadronic calorimeters. These are the hadronic barrel
calorimeter, the hadronic endcap calorimeters (HEC) and the forward calorimeters (FCAL). As
in the electromagnetic calorimeter, due to interactions between the passing hadrons and the
detector material, particle showers develop in the hadronic calorimeter. However, the physical
processes for energy deposition here are completely different with respect to electromagnetic
energy deposition. Since the passing particles interact with the atomic nuclei in the hadronic
calorimeter, a high energy deposition of the hadrons is achieved by using detector material with
a high Z.

The LAr EM calo, situated next to the CS, consists of accordion shape lead plates and Kapton
electrodes. Electromagnetically interacting particles create showers when passing through the
lead plates, which ionize the liquid argon. Because of the capacitive coupling between the
electrodes and the ionisation charge, the latter can be measured and is read out in intervals of
25 ns. The EM calo, as the subsystems of the ID, is divided into a barrel part and two endcaps
on each side. The barrel covers a range of η ≤ 1.475 while the endcaps can measure particles in
the range of 1.375 ≤ η ≤ 2.5 (inner end-cap) or rather 2.5 ≤ η ≤ 3.2 (outer end-cap). The barrel
is divided into two parts, each covering one hemisphere of the detector, both being separated
from another by a gap of 6 mm.

The two half-barrels have a thickness of more than 24 radiation lengths (more than 26 for
the endcaps). As precision physics is intended to be done for η ≤ 2.5, the LAr EM calo is split
into three longitudinal sections. Narrow strips with a pitch of roughly 4 mm constitute the strip
section, which has a constant thickness of ∼ 6 X0 with respect to η. This section provides good
position measurements in η and improves particle identification. The second section of the LAr
EM calo is segmented into towers with a size of ∆η × ∆φ = 0.025 × 0.025. It extends to a
thickness of 24 X0. The final section varies in thickness (2 X0 to 12 X0) and is divided into
parts of ∆η = 0.05. The granularity is coarser in the endcaps, since these are mainly used for
jet reconstruction and 6 ET measurements. A presampler is used for the regions in which the
upstream material in front of the calorimeter exceeds 2 X0 to account for energy losses in this
material.
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The resolution of the LAr EM calo, which is made up of a sampling term, a constant term
and a noise term, is expected to be approximately 1.6% for moderate photons over the whole
η-coverage, or better. For low-energy electrons, a resolution of 5% in the barrel and 3% in the
endcaps is expected. In figure 4.5 the EM Cal is shown together with the other parts of the
ATLAS calorimetry system.

Figure 4.5: The ATLAS calorimeters. The different parts of the calorimeter systems allowing
for the measurement of the energies of electrically charged particles and hadrons are labelled.

The hadronic barrel calorimeter is a sampling calorimeter which uses scintillating plastic tiles
as active material, and iron as the absorber material. Light pulses are emitted, when charged
particles cross the scintillators, which are quickly read out by wavelength shifting fibres into
photomultipliers with a low dark current and rise/transmit times in the order of nanoseconds.
The TileCal is divided into three parts, one barrel and two extended barrels. With a granularity
of ∆η × ∆φ = 0.1 × 0.1 (except for the last layer, where ∆η × ∆φ = 0.2 × 0.1) and a thickness
of 11 interactions lengths at η = 0, the TileCal covers an η-range of ±1.7 and allows for good
resolution of high energetic jets and for low punch through.

The liquid argon HECs measure hadronic energy deposition for 1.5 ≤ η ≤ 3.2. There are two
wheels per side, which use copper plates as absorber material. Each of the four HEC wheels
is composed of 32 identical modules. With increasing η, the HEC become coarser in terms of
∆η × ∆φ (0.1 × 0.1 for 1.5 ≤ η ≤ 2.5 and 0.2 × 0.2 for 2.5 ≤ η ≤ 3.2).

Finally, at a distance of 4.7 m from the IP, the FCAL covers a range of 3.1 ≤ η ≤ 4.9.
Three sections, one made of copper, the other two of tungsten, work as absorber material,
while once again liquid argon is used as the sensitive medium. The FCAL has a granularity of
∆η × ∆φ = 0.2 × 0.2.

The performance of the hadronic calorimeters is expected to be

σE

E
≈ 2

E[GeV]
⊕ 62.4%
√

E[GeV]
⊕ 1.7% (4.1)

for jets, whereas the numerators on the RHS are actually not constant for all jet compositions.
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4.2.4 Muon System

With a mass of roughly 106 MeV, muons are more than 200 times heavier then electrons.
Typical lepton momenta at the LHC are in the order of 1 − 100 GeV, which means that the
muons produced in pp-collisions are minimum ionizing particles (MIP). As a consequence, they
pass the ATLAS detector leaving only small amounts of energy in its calorimeters, while all
electrons are stopped in the electromagnetic (or at the latest in the hadronic) calorimeter. Since
nearly all other particles deposit all their energy in the calorimeter cells as well, muons are
the only charged particles known so far, that pass through the whole detector without being
stopped. Ionisation chambers outside the calorimeter system can therefore be employed to gain
information about muons in addition to the respective hits in the ID.

As they constitute the outer part of ATLAS, the muon chambers define its overall dimensions.
The muon system consists of three cylindrical layers concentric with the beam axis, the outermost
being located at a radius of about 10 m. Four disks at each side of the barrel region cover the
high η regions, the last one being located at a distance of roughly 23 m from the IP.

The muon chambers are not only used for precision measurements of muon momenta, but also
for triggering on muon events with well defined pT cuts. For these two purposes, four different
detector technologies are employed, as indicated in figure 4.6. Cathode strip chambers (CSC)
and monitored drift tubes (MDT) are used for the precision measurements, while the trigger
parts are made of resistive plate chambers (RPC) and thin gap chambers (TGC).

The MDTs cover a range of 0.05 ≤ η ≤ 2. They consist of aluminium tubes with a diameter
of 30 mm, a thickness of 400 µm and varying lengths between 0.7 m and 6.3 m. Signals due
to ionisation of the used mixture of 93% Ar/7% CO2 are transported via 50 µm diameter W-
RE wires, which provide a single resolution of 80 µm. The name of the MDTs derives from

Figure 4.6: This is a scheme of the ATLAS muon systems. The figure shows the arrangement
of the CSCs, TGCs, RPCs and MDTs. Furthermore, the toroid magnets for the bending of the
muon tracks are labelled.
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the optical monitoring of their alignment. Deformations after installation are measured by an
in-plane optical system, such that they can be corrected for in the offline analysis.

To meet the higher radiation rates for larger η, CSCs are used for this region (2 ≤ η ≤ 2.7).
These are multiwire proportional chambers, whose good spatial resolution is ensured by the
segmentation of the readout cathode and charge interpolation between neighbouring strips.
Spatial precision of more than 60 µm is achieved, as well as good timing resolution (7 ns) and
low neutron sensitivity. A total of 1.1 m3 of an Ar/CO2/CF4 is used in the CSCs.

The RPCs used for trigger issues are detectors operating with a mixture of SF6 and C2H2F4

between two parallel resistive bakelite plates. In an electric field of 4.5 kV/mm ionisation charges
develop into avalanches, which produce electric pulses of typically 0.5 pC. Two coordinates are
measured with two orthogonal rectangular layers, one being parallel to the MDTs, the other
perpendicular to it.

Finally the second part of the muon trigger system in ATLAS are the TGCs. They operate
with a total of 16 m3 of a gaseous mixture of CO2 and n-C5H12. In principle, the TGCs are
multiwire proportional chambers, except that the distance between the cathode and anode is
smaller than the anode wire pitch. The TGCs provide an excellent ageing behaviour in addition
to a good time resolution due to short drift times.

The performance of the muon chambers strongly depends on η and φ, as can be seen in figure
4.7. Values between 2% and 10% are obtained for a nominal value of pT = 100 GeV.
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Figure 4.7: The expected performance of the ATLAS muon system. As this two-dimensional
histogram indicates, for a transverse momentum of 100 GeV, momentum resolutions between
∼ 2% and ∼ 10% are expected. The figure shows also the strong dependence of the resolution
on η and φ.
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4.2.5 The Magnet System

The track of charged particles is bend when the particles enter a magnetic field perpendicular to
their direction of motion. The curvature of the track is then not only dependent on the strength
of the magnetic field, but also on the momentum of the particle transverse to the field. Thus, if
a magnetic field is applied in the tracking chambers of a detector, the particle momentum can
be reconstructed from the track via

r[m] =
p[GeV]

0.3B[T]
, (4.2)

where r is the bending radius, which is determined from the sagitta of the track, p the particle
momentum and B the magnetic field. If a spatial hit resolution of σx is provided, the momentum
resolution for a track measured at N equidistant points is given by the Glueckstern formula

σp

p
=

σxp

0.3BL2

√

720

N + 4
. (4.3)

Thus, in addition to a good spatial resolution, a high B field is needed for high precision momen-
tum measurements. In ATLAS, this is achieved by two magnet systems. For the inner detector
a central solenoid magnet provides a nominal axial magnetic field of 2 T (peak strength 2.6 T)
with an electric current of 7.6 kA. The solenoid is attached in ATLAS between the ID and the
LAr EM calo. It bends the tracks of charged particles in the inner detector.

For the muon chambers, a system of three toroidal magnets is used, each consisting of eight
superconducting air-core coils. The magnetic field, which is kept up by an electric current of 20
kA, peaks at a value of 3.9 T (4.1 T) for the barrel part (endcap toroids) and is adequate for
the desired precision. The end-cap toroids are rotated with respect to the barrel toroid by an
angle of 22.5 degrees in order to achieve optimal bending power in the overlap region of the two
magnets on each side.

4.2.6 Trigger System and Data Acquisition

The LHC bunchcrossing frequency of 40 MHz at its design luminosity of L = 1034cm−2s−1, each
with ∼ 20 proton proton interactions, corresponds to a data rate of more than 1 PByte/s. As
this is clearly too much for permanent storage, the data rate has to be reduced by orders of mag-
nitude. Moreover, the cross sections for most new physics processes is much lower than for the
respective background processes, as shown in figure 4.8. Thus, before any event data is stored,
it has to be decided whether the event is “interesting” and worth saving it, or not. The ATLAS
trigger system takes these decisions, by checking the abundance of muons, electrons/photons or
jets exceeding certain thresholds in transverse momentum, energy and isolation, as well as the
total (missing) transverse energy.

The reduction of the data rate is done stepwise at ATLAS and the level-1 (LVL1) trigger,
which is the only pure hardware trigger of ATLAS, performs the first of these steps. With an
input rate of approximately 1 GHz, the LVL1 trigger uses information from the muon trigger
system (i.e. RPC and TGC only) and from the tracker (TRT only), as well as coarsened
calorimeter information. The actual parametrisation of the LVL1 trigger is configured via e.g.
Field Programmable Gate Arrays, which allow for modifications, if needed. As long as it takes
the LVL1 trigger to take a decision, the information about the whole event has to be stored in
pipeline memories, being either deleted if the LVL1 response is negative, or read out into readout
buffers (ROBs) in the reverse case, where they are held until the event passes or is refused by
the level-2 (LVL2) trigger.
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Figure 4.8: The expected cross sections for various physics processes at the LHC. The total
elastic cross-section is expected to be ∼ 40 mbarn. The interesting processes, of which for
example the tt-pair production is included in the figure, occur at rates orders of magnitude
below that. Processes involving new physics have even lower production rates (depending on
the kind of new physics, of course). For example, the cross section for sparticle pair production
for tanβ = 2, are in the order of one nbarn in the best case, while it may happen that this cross
sections gets below one pbarn, in a still realistic scenario. The dependence of this cross-section
with respect to the squark/gluino masses is shown in the graph. The figure illustrates that
besides providing the conditions for sparticle production, it is a huge challenge to pick out event
candidates for these processes.

The LVL1 trigger has a maximum output rate of about 75 kHz. Nevertheless, the actual
output rate is expected to be only half of this for interesting physics events. The LVL2 trigger
reduces this rate further to approximately 1 kHz. In order to do this, the LVL2 trigger examines
so-called Regions of Interest (RoIs). By looking only at certain regions in the η-φ space, the
LVL2 trigger only accesses event information that is necessary for its decision. This is typically
only a few percent of the overall event data. It is expected that it will take the LVL2 trigger
some microseconds (O(1 − 10)) to accept or reject an event. In contrast to LVL1, the LVL2
trigger uses information from the precision muon chambers (MDTs and CSCs) in addition to
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the TGCs and RPCs, as well as the full granularity information from the calorimeters and the
ID, leading to sharpened thresholds for example.

The final step in the online event selection is the EventFilter (EF). The data is moved here
from the ROBs in a process called event building. The EF can access the whole event data,
which allows it to use complex algorithms like vertex or track fitting. The output rate of the
EF is in the order 100 Hz, which corresponds to a recording rate of O(100) MB/s. This data is
then processed and prepared for offline analyses. The LVL2 trigger and the EF are both pure
software based triggers and are together referred to as the High Level Trigger.

The complete trigger system is shown in figure 4.9. An overall data volume of about 1 PByte
is expected per year, which can be accessed by physicists in a distributed analysis computing
model via grid computing, where several tenthousand CPUs are available for offline analyses.

Figure 4.9: This is an illustration of the ATLAS trigger system. The different stages of
triggering and the individual components of each trigger are shown. On the left hand side, the
respective input/output rates of the trigger stages are shown.
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5 An Estimator for a Sparticle Mass

Sensitive Observable

The kinematic endpoint in the invariant mass spectrum of the visible products of a leptonic
decay chain of the second lightest neutralino is one observable sensitive to sparticle masses.
This observable can most likely be measured at the ATLAS experiment, given that the nature
is supersymmetric and that the mSUGRA model is the correct parametrisation of SUSY break-
ing. An estimator for this endpoint was constructed and evaluated for different input values
using Monte Carlo (MC) data, assuming that nature is actually supersymmetric and that the
mSUGRA model is the correct model of SUSY breaking. A calibration curve was constructed
by comparing the estimated values with the input values. The procedure is described in this
chapter.

5.1 Monte Carlo Simulation

Any method used for the analyses of ATLAS data needs to be tested on Monte Carlo data before
being applied to real data. The ATLAS software framework, Athena [47], which is an ATLAS
specific distribution of the GAUDI [48] system, provides the infrastructure for the generation,
simulation, digitisation and reconstruction of the MC data, as well as the actual analysis of
the produced/measured datasets itself. All these steps can be run independently from each
other. Several codes like Herwig [49], MC@NLO [50] and ALPGEN [51] are available for the
first step, the event generation. The second step is the detector simulation which is done with
the Geant4 package [52]. This software simulates the passage of particles and radiation through
matter in detail. Thus, a given set of particle four-momenta is translated into detector hits.
These are subsequently processed in the digitisation step and reconstruction algorithms are
run over the output of the digitisation. These steps take into account the finite resolution of
the detector systems and the efficiencies of the reconstruction process. Finally, the output of
these reconstruction algorithms is stored in Event Summary Data (ESD) or Analysis Object
Data (AOD). The MC data stored in the AODs and ESDs contains the true information of all
particles, like the four-momenta as calculated by the event generator, as well as the reconstructed
candidates for physics objects.

As the detailed simulation of the ATLAS detector with all its subsystems is a time consuming
task (∼ 15-30 minutes per event using a CPU with a clock rate of ∼ 2 GHz) and a high number
of events (∼ 104 − 106) is usually required, the detector simulation can also be done with the
ATLFAST I package [53]. Instead of using the full Geant4 simulation, the digitisation and the
reconstruction algorithms, the resolution effects and detector efficiencies are parametrised. The
four-momenta of the generated particles are smeared according to Gaussian distributions. The
parameters of these distributions depend on the particle type and its direction, and are extracted
from full simulations.

43



5 An Estimator for a Sparticle Mass Sensitive Observable

5.1.1 Event Generation

A number of independent and numerically different theoretical endpoints was needed for the
construction of the calibration curve. Events were generated within the scope of the bachelor
thesis of J. Hofestaedt [54], where the exact procedure is described in a little more detail. The
event generator Herwig and the multi parton scattering plug-in Jimmy [55] as embedded in the
Athena release 14.5.0 were used for the generation of the events. For each of the parameter sets
listed in table 5.1, approximately 160,000 SUSY events in proton-proton collisions at a center of
mass energy of 10 TeV, at which the first significant dataset from ATLAS was expected at that
time, were generated. All possible supersymmetric production processes in such collisions were
switched on and any allowed decay may occur in the generated events (for examples see chapter
2.2.4). The input SUSY mass spectrum, decay rates and mixing matrices were computed with
the Isasugra package, version 7.79 [56, 57].

5.1.2 Detector Simulation

The ATLAS detector was simulated using the ATLFAST II package [58], which is a combina-
tion of a full detector simulation and a fast parametrised smearing of the directly measurable
quantities of particles and jets. The ATLAS Inner Detector is fully simulated using Geant4,
while the Calorimeters are simulated using the FastCaloSim package. The Muon System can be
fully simulated, or simply parametrised as in the ATLFAST I simulation. The fully simulated
muons were used, while trigger information was not taken into account for the present study.
The ATLFAST II simulation was performed on the LHC computing grid (LHCG), using Athena
version 14.5.0.1.

5.1.3 Validation of the Generated Monte Carlo Data

For the validation of the privately produced MC data, a total of 18,500 events were produced
at the ATLAS SU3 benchmark point [59]. These events were compared to the official dataset
“mc08.105403.SU3 jimmy susy.merge.AOD.e352 a84 t53”. This was produced with Athena ver-
sion 14.2.25.6. All the parameter points under examination here are SU3 like points in the
sense that three of the five mSUGRA parameters are fixed at the SU3 values. The figures 5.1
and 5.2 show the comparison for several muon variables. Since only muons were used for the
construction of the calibration curve, the respective plots for electrons and jets are not shown
at this point. However, the agreement between the official and the private production is good
for electrons and jets at event generator level, as well. For a number of reasons, the private
MC had to be produced locally rather than on the LHCG, such that a one-to-one agreement
is not expected. This is due to the unavoidable usage of two different Athena versions for the
production of both samples, as some of the patched versions that were used for the production
of the official MC were not available locally.

There are small differences in the distributions, especially in the tails of the energy and
transverse momentum distributions. These can be explained by the usage of different Athena
versions for the production of the two samples. Besides statistical differences, a major change
in the electron reconstruction from 14.2.25.6 to 14.5.0.1 and changes in the jet reconstruction
algorithms might slightly affect the muon distributions by overlap removal. Minor changes in
the muon reconstruction could as well explain the differences, partly. Overall, the distributions
show a reasonable agreement, such that the private production was regarded to be valid.
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Figure 5.1: Comparison of private Monte Carlo Production with official Monte Carlo Pro-
duction. On the left hand side, (a), (c) and (e), the comparison is shown for the Monte Carlo
truth information (i.e. generator level), while on the right hand side, (b), (d) and (f) show the
respective distributions for the reconstructed muons after some selection cuts have been applied.
The STACO muon collection has been used [59]. In all histograms the error bars for the official
sample have been omitted for a better readability. The observed differences are mostly within
statistical limits and do not seem to be critical. An explanation for differences in the recon-
structed spectra, besides statistical fluctuations, might be a major difference in the electron
reconstruction algorithms, which via overlap removal might slightly affect the selection of the
muon candidates.
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Figure 5.2: A comparison between the private and the official Monte Carlo for η and φ. As for
the energy, momentum and multiplicity, a good agreement between both samples can be seen.
As expected, the φ distributions are both flat, while the η-distribution peaks around η = 0.
Again, the plots on the left hand side show the comparison at generator level, while on the right
hand side the comparison for the reconstructed muon candidates is shown.

5.2 An Estimator for a Kinematic Endpoint Related to

Sparticle Masses

A significant region of the mSUGRA parameter space features a neutralino LSP. At least two
undetectable, massive particles are therefore expected in these regions in the final states of
supersymmetric processes at the LHC, given that R-parity is conserved. A direct measurement
of the sparticles’ masses is thus difficult and more advanced techniques and observables need to
be studied for the extraction of the sparticle mass spectrum. One family of observables which
is being studied extensively are kinematic edges in the mass spectra of visible decay products.
An example is the endpoint in the dilepton mass spectrum of the decay chain

χ̃0
2 → l̃∓i l

± → χ̃0
1l

∓l±. (5.1)

The endpoint mmax
ll is sensitive to the masses of all three sparticles occurring in this chain.

The distribution of the dilepton mass follows a linear relation with a sharp endpoint. In the
experimental data, this sharp endpoint is washed out by detector effects. The goal of this chapter
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is the construction of an estimator for the kinematic endpoint mmax
ll . Experimental effects are

modelled using a number of approximations. A good estimator of the endpoint should be related
to the true (theoretical) endpoint via an invertable (and simple) relation, the simplest of which
is a straight line,

mmax,est.
ll = a+ b ·mmax,true

ll . (5.2)

In the best case the estimator should be unbiased, i.e. a = 0, b = 1, as this would maximize the
precision of the estimation. The extraction of these parameters for the constructed estimator of
mmax

ll is described at the end of this chapter.

5.2.1 The Decay Chain χ̃0
2 → l̃∓i l± → χ̃0

1l
∓l±: The Kinematic Endpoint and a

Model for the Signal Distribution

If the leptonic decay (5.1) of the second lightest neutralino is considered, as shown in figure 5.3,
the visible decay products are two leptons. In the following lepton means either a muon or an
electron. The decay chain may as well contain two taus, but these undergo hadronic or leptonic
decays including neutrinos in the detector, such that the treatment of the visible decay products
is different from the treatment of muons and electrons described in the following. Although
none of the sparticles can be seen directly, information about these can be gained by looking
at these leptons. Following the common nomenclature, the lepton originating from the decay
of the χ̃0

2 will be referred to as the near lepton, and the lepton originating from the l̃i decay
is referred to as the far lepton. The only directly measurable observables of this decay chain
are the four-momenta of these two leptons, pnear

µ and pfar
µ . The slepton must be on-shell, if

the process shown in figure 5.3 is a sequence of two two-body decays. For the mSUGRA points
under study here, the real three-body decay

χ̃0
2 → l±l∓χ̃0

1, (5.3)

in which the slepton would be off-shell, is highly suppressed as shown in figure 5.3. For this
reason a possible contribution of real three-body decays does not need to be taken into account
for all further considerations, here. Furthermore, at all parameter points used here, the slepton is
the partner of the right chiral lepton. The mass hierarchy forbids the respective decay including
a l̃L instead.

In a reference frame S, the square of the sum of the two lepton momenta in (5.1) is given by

m2
ll = (pnear + pfar)µ (pnear + pfar)

µ

= 2m2
l + 2ES

nearE
S
far − 2~pS

near · ~pS
far (5.4)

≈ 2ES
nearE

S
far

(
1 − cos θS

)
, (5.5)

where for (5.5) the high energy approximation ml = 0 is applied and θS is the opening angle
between the two three-momenta ~pS

i . If S is chosen to be the rest frame of the slepton Sl̃, and
two-body decay formulae [13] are applied, (5.5) can be rewritten as

m2
ll = 2

m2
l̃
−m2

χ̃0
1

2ml̃
︸ ︷︷ ︸

=E
S

l̃
far

·
m2

χ̃2
0

−m2
l̃

2ml̃
︸ ︷︷ ︸

=E
S

l̃
near

·
(
1 − cos θSl̃

)
,

=
(mmax

ll )2

2
·
(
1 − cos θSl̃

)
, (5.6)
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Figure 5.3: (a) The tree level Feynman diagram for the χ̃0
2 decay chain studied in this chapter.

In collisions at the LHC, the χ̃0
2 will most likely originate from a squark decay. Since it is unstable,

it can decay into a lepton and a slepton as shown in the figure. The slepton is unstable itself
and may further decay into a χ̃0

1 and another lepton. The χ̃0
1, in this case the LSP, escapes the

detector undetected, leaving the two leptons as the only visible decay products of the χ̃0
2. (b)

This diagram shows 1-R, where R is defined as
Γ(χ̃0

2→χ̃0
1ll)

Γ(χ̃0
2→l̃Rl)×Γ(l̃R→χ̃0

1l)
. In most cases, the relative

fraction R is less than some per cent.

where the maximal value

(mmax
ll )2 =

(

m2
χ̃0

2

−m2
l̃

)(

m2
l̃
−m2

χ̃0
1

)

m2
l̃

(5.7)

is acquired when the two leptons are back to back, i.e. cos θSl̃ = -1.

Both the slepton and the second lightest neutralino are unstable and thus have a finite average
lifetime. This is directly translated into a finite width in the respective mass distributions via
the uncertainty principle (see, for example, [60]). The finite width of the distributions for two
of the masses occurring in (5.7) thus lead to a distribution with non-vanishing width for the
endpoint. Nevertheless, as shown in figure 5.4, the widths of the relevant mass distributions are
very small with respect to the endpoint for all parameter sets used here (see table 5.1), such that
this effect is neglected, and a sharp distribution for the theoretical endpoint (5.7) is assumed.

In Sl̃, there is no angular correlation between the two leptons since the slepton carries spin 0.
This can be translated into a differential cross section for the process shown in figure 5.3, which
in S l̃ is given by

1

σ

dσ

d cos θSl̃
=

1

2
. (5.8)

By means of (5.6), this is directly transferred into a differential cross-section with respect to the
Lorentz invariant mass, namely

1

σ

dσ

dmll
=

1

σ

∣
∣
∣
∣

d cos θ

dmll

∣
∣
∣
∣

dσ

d cos θ

=
2mll

(
mmax

ll

)2 . (5.9)
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Figure 5.4: (a) shows the width of the l̃R, while (b) shows the width of the χ̃0
2 for the parameter

points examined in this chapter. On the y-axis, the width is given in GeV, on the x-axis the
number of the respective parameter point (as listed in 5.1) is shown. For both particles and
nearly all parameter points, the decay widths are less than 1% of the theoretical endpoint in
the dilepton spectrum, such that their smearing effect on the theoretical endpoint is neglected,
here.

As the dilepton mass mll is Lorentz invariant, so is the differential cross-section (5.9). Thus, if
the dilepton mass spectrum of the decay shown in figure 5.3 is measured, a triangular distribution
with a slope of m = 2

(mmax
ll )

2 and a sharp endpoint (5.7) is expected by theory. This is shown

for the Monte Carlo truth information for parameter set 5 in figure 5.5 as an example.
Experimentally, the invariant dilepton mass is determined from the four-momenta of the two

leptons which can only be measured with a finite resolution. Assuming Gaussian uncertainties,
the probability to measure the value pz for the z-component of a particle’s three-momentum, for
example, if the true value is given by pt

z, can then be calculated by

pmeas(pz|pt
z) =

1√
2πσpz

· e
−

(pz−p′z)2

2σ2
pz , (5.10)

where the mean p′z and the width σpz of the distribution are in general functions of all components
of the lepton four-momenta pli. A general function describing the experimentally measured
dilepton mass spectrum from the decay chain χ̃0

2 → ll̃ → χ̃0
1ll is therefore given by

(
1

σ

dσ

mll

)

exp

=

∫
2m′

ll
(
mmax

ll

)2 · f(pl1, pl2) · δ(m′
ll −m2

ll)d
4pl1d

4pl2, (5.11)

in which the function f parametrizes the resolution effects and mll is regarded as a function of
the four-momenta, m2

ll = pl1 · pl2. From a measurement of the cross section (5.11), an estimator
for the value of mmax

ll can be extracted.
In (5.11), f is in principle the product of eight expressions of the form (5.10), one for each

component of the two lepton four momenta. In the present study, a simplifying assumption has
been made. The function f was not considered as a function of each single component of the
muon four-momenta, but rather as a function of the invariant mass itself. Assuming Gaussian
uncertainties for each measured value of mll, f is again of the form of (5.10). The width of this
distribution was taken to be constant, and the mean of the Gaussian was taken to be the true
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Number m0 [GeV] m1/2 [GeV] Events Lint [fb−1] NSignal mmax,theo
ll [GeV]

SU3 100 300 − − − 102.70
1 76 300 166,567 29.81 1,394 92.23
2 82 300 166,546 30.12 1,871 95.82
3 91 300 166,567 30.39 2,423 99.99
4 100 210 166,599 4.88 4,284 52.94
5 100 220 166,589 6.16 4,650 62.11
6 100 270 166,582 17.65 5,179 92.05
7 100 280 166,547 21.27 4,734 96.04
8 100 291 166,558 26.14 4,025 99.96
9 100 305 166,534 33.37 2,908 104.11

10 100 322 166,546 44.76 2,058 108.07
11 110 240 166,594 9.73 4,577 71.16
12 110 245 166,584 10.8 4,734 74.92
13 110 300 166,558 31.02 4,726 104.01
14 115 355 166,552 77.49 1,632 120.93
15 125 380 166,537 113.82 1,397 130.16
16 128 300 166,539 31.69 4,861 101.87
17 133 300 166,563 31.94 4,779 100.18
18 138 300 166,530 32.15 4,753 97.99
19 140 400 166,511 154.05 1,508 140.06
20 142 300 166,527 32.23 4,691 95.87
21 145 300 166,535 32.38 4,716 94.00
22 148 300 166,520 32.47 4,637 91.96
23 150 430 166,496 234.22 1,153 150.56
24 151 300 166,554 32.61 4,584 89.71
25 153 300 166,531 32.75 4,539 88.08
26 157 300 166,537 32.89 4,377 84.45
27 160 300 166,518 32.98 4,046 81.43
28 160 450 166,494 307.82 1,035 158.75

Table 5.1: The used parameter sets. As a comparison, the official ATLAS benchmark point
SU3 is included in the list. For all parameter sets listed here (including the SU3 benchmark
point), tanβ = 6, A0 = −300 GeV, sgnµ = +1. The sets cover a range of roughly 100 GeV on
the mmax

ll -axis, such that with the construction of the calibration curve a reasonable range of
possible endpoints for the decay chain shown in figure 5.3 in the mSUGRA bulk region is covered.
The total number of generated events, the corresponding integrated luminosity at

√
s = 10 TeV

and the number of signal events is shown, as well as the theoretical endpoint.

value. The differential cross section (5.11) is thus given by

1

σ

dσ

dmll
=

1√
2πσmll

·
∫

2m′
ll

(
mmax

ll

)2 · e
−

(m′

ll−mll)
2

2σ2
mll dm′

ll

=
2 · σmll√

2π ·
(
mmax

ll

)2



e
−

m2
ll

2σ2
mll − e

−
(mmax

ll −mll)
2

2σ2
mll





+
2mll

(
mmax

ll

)2 · 1

2

[

erf

(
mmax

ll −mll√
2σmll

)

− erf

( −mll√
2σmll

)]

, (5.12)
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Figure 5.5: The invariant mass spectrum of muon-pairs originating from the χ̃0
2-decay chain.

The histogram shows the distribution obtained from Monte Carlo truth information for the
Parameterpoint 5. The triangular shape and the endpoint are clearly visible. The fact that the
last bin shows less entries than the next to last one is a binning effect.

in which σmll
is the invariant mass resolution. The function (5.12) is plotted for various values of

this resolution in figure 5.6. The effect of the smearing can nicely be seen here. With decreasing
resolution, i.e. increasing σmll

, the sharp edge is washed out and the distribution peaks at lower
values. In the limit σmll

→ 0, the perfect triangular shape is restored, while for large values of
σmll

the distribution becomes more and more Gaussian.

5.2.2 Background

In the present study, only supersymmetric and combinatorial background was taken into account.
If, for example, a pair of gluinos is produced and both of these undergo the decay chain shown
in figure 2.12(a), there are four leptons of the same flavour in the final state in ∼ 25% of all
such events. This yields two potential combinations of two pairs of opposite sign leptons, of
which only one is the “correct” one (the signal combination). From data it is not clear which
one is the correct combination. There are more decay chains with one or more leptons, like
the one shown in figure 2.12(b). Finally a Z0 decaying into two muons might occur in one of
the sparticle decays. These processes give rise to more combinatorial background. Obviously,
a cut on the Z0 mass must not be applied for the background reduction. The supersymmetric
background is taken into account and two ways to handle it are described in the next section.

SM background like top pair production was explicitly not taken into account for the present
study.
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Figure 5.6: Plots of the tested fit function for a number of different invariant mass resolutions.
The hypothetical endpoint here was fixed at x ∼ 100.

5.2.3 Calibration Curve

The extraction of the kinematic endpoint (5.7) was done in the same way for all 28 parame-
ter sets, no point-specific optimisations have been used. Only muons were used for this first
approach, although for reasons of lepton universality and the dominant third family approxi-
mation (i.e. (yl)ab = 0 for the first two generations), the numerical value of the endpoint is
expected to be (nearly) the same for a muonic and an electronic decay of the χ̃0

2, as in this case
mµ̃ = mẽ = ml̃.

The muon candidates used for the extraction of the invariant mass spectrum were taken
from the AOD STACO muon collection [59], which contains muon candidates reconstructed
from statistically combined ID and muon chamber hits. Muons were selected according to the
proposed cuts in the SUSY CSC notes [59]. These are:

• Combination quality: The tracks of the muon candidate in the ID and the muon system
should match with a χ2 < 100. This is a very loose cut.

• Isolation: The energy deposit in the calorimeter in a cone of ∆R =
√

(∆η)2 + (∆φ)2 < 0.2
around the muon should be less then 10 GeV. This criterion was used because only isolated
muons are of interest, here.

• Jet Overlap: All muons in a cone of ∆R = 0.4 around a jet were rejected as these muons
were assumed to originate from the jet. Only jet candidates with a minimal distance of
∆R = 0.2 to the next nearest electron were considered.
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Any event with a pair of two muons with opposite charge, fulfilling these criteria, was selected
and the muon pair was taken as a candidate muon pair for the extraction of the invariant mass
triangle. This way, the obtained set of opposite sign(charge) same flavour (OSSF) dimuon pairs
contains a lot of combinatorial background.

In the first step a cut on the transverse momentum of both muons was applied for the re-
duction of the supersymmetric and combinatorial background. It turned out that the signal to
background ratio could significantly be improved for all used parameter sets when a cut of 25
GeV was applied. This can be seen from the pT -distributions shown as an example in figure 5.7.
The cut efficiencies for signal and combinatorial background are listed in table 5.2. Before the
cut is applied, the background is clearly dominant, but after the application of the cut this is no
longer the case. However, the shape of the background distribution changes. For the extraction
of the kinematic endpoint of the signal spectrum, the remaining background was modelled by
a Landau distribution. It was checked that the signal distribution, in particular the position of
the endpoint, is not significantly altered by the application of the cut.

Figure 5.8 shows the effect of the cut for one parameter set. After the application of the cut,
the triangular shape of the signal distribution becomes clearly visible in the total spectrum,
which is not the case before the cut is applied. This method does not provide the highest
separation power and signal efficiency, but it turned out to be very robust. A common method
for the reduction of the combinatorial background is a statistical subtraction. Some details on
this method and a reason why it was not used at this point are described in appendix A.
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Figure 5.7: The transverse momentum distributions for (a) background, and (b)/(c) signal
muon pairs. The leading muon is always the muon with the higher transverse momentum. As it
is impossible to assign the attributes near and far to the muons correctly from data, this ordering
seems natural. At the parameter point belonging to the shown plots (which is parameter point
2), the near lepton is the leading lepton in nearly all cases, which can be seen by a comparison
between (b) and (c). This is due to the fact that at this point mχ̃0

2
− ml̃R

≈ 80 GeV, while
ml̃R

−mχ̃0
1
≈ 25 GeV, such that the phase-space for the far lepton is much smaller than that for

the near lepton. This is not the case for all parameter points, however. From the distributions
(a)-(c) it can already be seen that a cut at pT = 25 GeV for both muons might help to get rid
of most background, while leaving a reasonable number of signal events.

After the extraction of the OSSF muon-pair candidates from the MC data and the application
of the transverse momentum cut of 25 GeV, the invariant-mass distribution of all the remaining
dimuon combinations was fitted with an appropriate function. It was already indicated that this
function is given by

fFIT
mll

= NSig · g (mll|mmax
ll , σmll

) +NBkg · Landau(mll|MPV, σLandau), (5.13)
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Figure 5.8: The impact of the transverse momentum cut on the invariant mass-distribution for
both signal and background at parameter point 2. (a) shows the distributions for pT > 5 GeV,
while in (b) the cut at 25 GeV has been applied. The signal-triangle becomes clearly visible
after the application of the cut, while a significant part of the combinatorial background is cut
away.

in which g is given by (5.12). Evidently, there are six adjustable parameters in this function,
namely

• mmax
ll : The estimator for the endpoint in the invariant mass distribution of the signal.

• σmll
: The constant describing the assumed experimental resolution for a single measure-

ment of the invariant mass of two muons.

• NSig: The normalisation of the signal distribution.

• MPV: The most probable value of the Landau describing the combinatorial background.

• σLandau: The width of the Landau describing the combinatorial background.

• NBkg: The normalisation of the combinatorial background.

Thus, the location of the true best fit values is not a problem of lowest dimension, such that an
advanced technique was used for the fits of the spectra, namely the method BCHistogrammFit-
ter::Fit() which is included in the Bayesian Analysis Toolkit (BAT) [61].

The BAT package calculates full posterior probability density functions (pdfs) for the param-
eter space of a given model, which provides a prediction of the measured quantities. The actual
predictions depend on the model parameters, ~λ, and the model M itself. In order to include
experimental effects that are not included in the pure theoretical model, a set of nuisance pa-
rameters, ~ν, is considered. By applying Bayes’ Theorem for a fixed model the probability for a
set of n parameters ~λ and n′ nuisance parameters ~ν, given a set of experimental measurements
~x = ~D, can be calculated as

P (~λ, ~ν| ~D) =
P (~x = ~D|~λ, ~ν) · P0(~λ, ~ν)

P (~x = ~D)
. (5.14)

Here, P0 is the prior probability for a set of (nuisance) parameters. The denominator in (5.14)
is the probability for the experimental outcome ~D given any set of (nuisance) parameters, and
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Set # S/B before Cut S/B after Cut ǫS [%] ǫB [%]

1 0.1518 0.4561 46.54 15.49
2 0.182 0.6436 52.16 14.75
3 0.2499 0.9594 59.09 15.39
4 0.429 1.127 33.41 12.72
5 0.4795 1.525 43.89 13.8
6 0.5351 1.785 61.99 18.58
7 0.5309 1.69 62.34 19.58
8 0.4476 1.525 63.11 18.52
9 0.3141 1.13 64.15 17.83

10 0.2152 0.7917 59.82 16.26
11 0.468 1.522 51.47 15.82
12 0.4925 1.697 54.68 15.87
13 0.484 1.473 67.5 22.18
14 0.1738 0.6036 65.28 18.8
15 0.1445 0.5084 68.94 19.59
16 0.4705 1.414 68.58 22.81
17 0.4504 1.317 67.88 23.22
18 0.4429 1.253 66.12 23.38
19 0.1677 0.5532 73.91 22.4
20 0.4467 1.2 64.88 24.15
21 0.4427 1.169 64.04 24.26
22 0.4367 1.08 62.07 25.11
23 0.1241 0.4198 75.16 22.22
24 0.4267 1.001 58.78 25.05
25 0.4157 0.9577 57.23 24.84
26 0.4018 0.8855 54.48 24.72
27 0.3747 0.7656 51.29 25.1
28 0.1124 0.3531 77.42 24.64

Table 5.2: Signal to background ratios and the pT -cut efficiencies for both signal and back-
ground for all parameter points. For nearly all points, the signal efficiency is well above 50%,
while the background efficiency is always smaller than 26%. The signal to background ratio is
significantly improved by the cut for all points.

P (~x = ~D|~λ, ~ν) is the probability for the measurement ~D given a specific set of (nuisance)
parameters.

The so-called marginalised posterior pdf for a single parameter λi can be calculated from the
full posterior pdf (5.14) by integrating out the dependence on all other parameters:

P (λi| ~D) =

∫

i6=j
dn−1λdn′

νP (~λ, ~ν| ~D). (5.15)

In this case, the measurements are the numbers of bin entries in the dimuon invariant mass
histograms. For all parameter sets, a total number of 50 bins has been used, such that there is
a total of 50 measurements for the estimation of the model parameters. Flat priors have been
used (as by default), and the probability for a measurement ~D given a fixed set of (nuisance)
parameters is the product of Poissonian distributions for each bin. The expectation values are
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given by (5.13), i.e.

P ( ~D|~λ, ~ν) =
∏

i

e−
R

i fFIT
mll

dmll ·
(∫

i f
FIT
mll

dmll

)ni

ni!
, (5.16)

where ni denotes the actual number of entries in the ith bin, and
∫

i f
FIT
mll

dmll is the expectation
value for this bin. (5.16) implies the assumption of Poissonian uncertainties for each bin. In
order to find the set of (nuisance) parameters which maximize the full posterior pdf (5.14), this
pdf is determined using Markov Chain Monte Carlo (MCMC). A Markov Chain is a series of
points ~λi in the parameter space, in which the pdf for the ith step depends only on the current
position, ~λi−1. Using a MCMC, a stationary posterior pdf is created, which is realised in BAT
via the Metropolis algorithm. For the study presented here, a total of 500,000 iterations have
been used in the MCMC. The parameter start values and allowed ranges have been chosen by
eye in the first time, and have been improved in an iterative procedure, such that for each
parameter set a total of 3-5 individual fits have been performed. Two of the final fits are shown
as an example in figure 5.9. BAT estimates the goodness of the fit by the computation of a
p-value. The p-values for all fits performed for the present study are listed in table 5.3, and it
turns out that (nearly) all p-values indicate quite a good fit quality.

(a) (b)

Figure 5.9: Results of two of the fits performed with BAT. (a) shows the reconstructed spectra
with the best fit result including the uncertainty band for parameter set 1. In (b), the same plot
is shown for parameter set 17. The p-values for the fits are (a) 0.65 and (b) 0.09.

For the estimation of the true kinematic endpoint (5.7), the median of the marginalised pdf
for the parameter mmax

ll has been used, rather than the global mode of the full posterior pdf.
Assuming a somewhat Gaussian behaviour of the marginalised pdf, the mean, the median and
the mode should not be too different, such that in principle all three could be used. Nevertheless,
with respect to the mean, the median is more robust against large deviators, and the mode of the
marginalised pdf might experience small deviations from the true mode due to small statistical
fluctuations and somewhat larger fluctuations due to the autocorrelation of the elements of the
Markov Chain. The estimators determined in this way are listed in table 5.3, and an example
for the marginalised posterior pdf for mmax

ll is shown in figure 5.10. The 0.16 and 0.84 quantiles
are used for the quotation of the lower and upper uncertainties on the estimator.

Having extracted the endpoint estimators for all 28 parameter sets used, the final step was
the determination of the parameters of the calibration curve (5.2). As a matter of fact, not all
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(a) (b)

Figure 5.10: Some more details of the fit for parameter set 17. (a) shows the marginalised
posterior pdf for the kinematic endpoint in arbitrary units. The dashed line denotes the median,
while the diamond and the triangle denote the mean and the global mode, respectively. The
colored area marks the 16% and 84% quantiles of the distribution. In (b), the two dimensional
posterior pdf for the endpoint mmax

ll and the nuisance parameter σmll
is shown in arbitrary

units. The correlation at this parameter point is roughly -35%. These plots were automatically
generated by BAT. The parameters mll max and sigma mll are given in GeV.

of the parameter sets have been used for this for two reasons: First, it can be seen from table
5.3, that for the five parameter sets 22, 24, 25, 26 and 27, the fitted values for the endpoint show
significant upward fluctuations with respect to the true value. Obviously, this is also the case for
some more sets, like the sets 1 and 2, but for the former mentioned points, a clear reason for the
significant deviations can be given. This reason is the vicinity of the endpoint to the Z0 peak,
which after application of the pT cut remains clearly visible in the respective spectra, as shown
in figure 5.11(a), for example. The critical attribute of the parameter sets 22 and 24-27 is, that
the theoretical endpoint in the signal spectrum is below the Z0 pole mass (or, more precisely,
below 93 GeV, which is the upper edge of the bin containing the Z0 mass of ∼ 91 GeV). This is
as well the case for the points 1 and 6, but for these two points, as shown for point 6 in figure
5.11(b), the Z0 contribution is nearly invisible. As the Z0 pole is not explicitly included in the
modelling of the background, the best fit value for the kinematic endpoint is pulled upwards,
if the true value is only slightly smaller than the Z0 mass. If the endpoint is still close to, but
above the Z0 mass, this is no longer a problem, as the peak is then simply absorbed in the
triangular shape, causing an increase in the bin content of two or three bins and thus decreasing
the p-value for the fit, but not washing out the kinematic edge. If the endpoint is below the Z0

pole with a sufficient distance, the Z0 peak does not affect the best fit value of the edge, as well.
For this reason, the five parameter sets 22 and 24-27 have been excluded from the construction
of the calibration curve.

The background model was not changed in order to include the Z0 mass peak for two reasons.
First, this would introduce additional parameters to the fit and is superfluous for the remain-
ing 23 parameter sets for this first test. Thus point specific optimisations would have to be
introduced, as there are evidently parameter sets with a significant number of Z0 bosons in the
SUSY decay chain which have nearly the same numerical endpoint in the dimuon spectrum as
points in which sparticle decays into a Z0 are strongly suppressed. The implementation of point
specific optimisations was not desired at this point. Secondly, the addition of a Breit-Wigner
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Set # True Value [GeV] Fitted Value [GeV] p-Value of fit

1 92.23 95.14+1.02
−1.15 0.65

2 95.82 97.25+0.81
−0.74 0.97

3 99.99 99.96+0.82
−0.66 0.77

4 52.94 52.04+0.77
−0.57 0.06

5 62.11 61.6+0.52
−0.49 0.74

6 92.05 92.28+0.36
−0.4 0.66

7 96.04 95+0.47
−0.62 0.38

8 99.96 99.78+0.59
−0.45 0.82

9 104.11 104.36+0.74
−0.88 0.28

10 108.07 107.86+0.82
−0.9 0.84

11 71.16 71.06+0.45
−0.53 0.73

12 74.92 74.95+0.28
−0.29 0.94

13 104.01 103.82+0.5
−0.5 0.5

14 120.93 120.85+1.36
−1.66 0.94

15 130.16 126.81+2.82
−3.13 0.06

16 101.87 101.59+0.42
−0.51 0.65

17 100.18 100.22+0.51
−0.51 0.09

18 97.99 98.04+0.44
−0.44 0.65

19 140.06 136.39+1.24
−1.33 0.96

20 95.87 95.46+0.48
−0.51 0.17

21 94 94.4+0.54
−0.53 0.9

22 91.96 93.18+0.37
−0.3 0.64

23 150.56 146.77+2.79
−3.35 0.27

24 89.71 91.95+0.5
−0.53 0.89

25 88.08 90.3+0.74
−0.76 0.73

26 84.45 88.58+0.99
−0.97 0.16

27 81.43 86.4+1.76
−1.96 0.01

28 158.75 155.76+2.37
−2.47 0.01

Table 5.3: Fit results obtained with BAT. For each parameter set, the true value of the endpoint
and the fitted value including statistical uncertainties are shown. In addition, the p-values for
all fits are listed, which indicate a good goodness of fit for nearly all parameter points.

or a Gaussian to the background model, peaking at ∼ 91 GeV, would introduce the risk of
underestimating the numerical value of the endpoint at these parameter points.

Still, not all of the remaining 23 parameter sets have been used for the construction of the
calibration curve, as a test sample was needed to check the goodness of the assumption of a
linear calibration curve. The parameter points 3, 5, 6, 9 and 23 have been chosen to constitute
this test-sample. The choice was arbitrary, but it was paid attention that the whole range from
∼ 50 GeV to ∼ 160 GeV was covered by both the test sample and the sample used for the fit of
the calibration curve.

For this fit, the class TGraphAsymmErrors as included in the root-software package [62] has
been used. All the remaining 18 parameter sets have been used for the fit of the two parameters
occurring in the linear calibration curve. In order to reduce the correlation between the slope
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Figure 5.11: (a) shows the invariant mass distributions for both signal and combinatorial
background (generator level) at parameter point 27 after the application of the pT -cut. It can
clearly be seen that the Z0 peak might influence a determination of the kinematic endpoint in
the signal spectrum (the effect is even increased when detector effects are taken into account).
In (b) the respective distribution for parameter point 6 is shown. At this point, no Z0 peak is
visible in the spectrum, which indicates that sparticle decays into Z0 bosons are suppressed at
this parameter point.

and the offset, a modified version of (5.2) has been used, namely

mmax,est.
ll = a′ + b′ ·

(

mmax,true
ll − 100 GeV

)

. (5.17)

The result of the fit is shown in figure 5.12, and the fitted values of the slope b′ = 0.988± 0.009
and the offset a′ = (99.76 ± 0.15) GeV are in good agreement with 1 and 100 GeV within 2 σ.
However, the p-value of roughly 4% is relatively small. This might indicate an underestimation
of the uncertainties on the estimator. The correlation between a′ and b′ is about 53%. If the
fitted values for the slope and the offset of the calibration curve are applied to the test sample,
a very good agreement between the true value and the extracted value is observed, as shown in
table 5.4.
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 / ndf 2χ   27.6 / 16

Prob   0.03527

Constant  0.1522± 99.76 

Slope     0.008663± 0.9883 

 / ndf 2χ   27.6 / 16

Prob   0.03527

Constant  0.1522± 99.76 

Slope     0.008663± 0.9883 

Figure 5.12: Fit of the calibration curve. 18 of 23 selected points were used to fit this straight
line. On the x-axis, the true value of the kinematic endpoints are drawn, while the fitted
values are shown on the y-axis. The error bars show the upper and lower uncertainties with a
magnification factor of 10. The fit of a straight line yields quite a high χ2 with a p-value of only
4%. The best fit slope and offset might indicate very small systematic effects, but within 2 σ
they are in agreement with a straight line through the origin with slope 1.

True Value [GeV] Fitted and “Gauged” Value [GeV] Deviation [σ]

62.11 61.39+0.69
−0.67 1.06

92.05 92.43+0.21
−0.45 0.85

99.99 100.20+0.85
−0.68 0.3

104.11 104.65+0.76
−0.9 0.61

150.56 147.57+2.85
−3.41 1.05

Table 5.4: Comparison of the results obtained with the constructed calibration curve (see
figure 5.12) with the true values for the test sample. The deviations, expressed in terms of the
uncertainties on the fitted and “gauged” values, are also quoted. In principle, the test with the
control sample shows that for the given simplifications, the tested function is perfectly adequate
for the determination of the kinematic endpoint (5.7).

The results show, that an unbiased estimator was found for the kinematic endpoint mmax
ll .

The parametrisation of the measured signal distribution and the modelling of the combinatorial
SUSY background have been proven to describe the Monte Carlo data very well. Given the
explained approximations and assumptions, the tested method was shown to be successfull.
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6 Systematic Uncertainties in Fits of

SUSY-Lagrangians with the Program

Fittino

In the previous section, one observable, which may be measurable at the LHC and be employed
for SUSY parameter determination given that nature is actually supersymmetric, was examined.
Now, the “final” step of SUSY parameter estimation is explained and performed on pseudo data.
The focus in this section is on the program Fittino [35], which amongst other such programs
[7, 63, 64], is one alternative for the extraction of SUSY Lagrangians from future data. After
a short description of the functionality of the program, two new interfaces between Fittino and
the programs SoftSUSY [37] and SUSY-HIT [65], which have been written in the context of
this thesis, are introduced. With the implementation of these interfaces in the Fittino source
code, systematic uncertainties on the Fittino results can be evaluated for the first time.

Some of the plots shown in this chapter were generated automatically. Therefore, two different
labels for the parameters will be used. The parameter m0 is sometimes referred to as M0, the
parameter m1/2 is sometimes labelled M12 and the parameter A0 is sometimes labelled A0.

6.1 The Program Fittino

Fittino uses observables directly related to SUSY, as well as observables which are sensitive
to SUSY only indirectly, to extract the MSSM parameters whose corresponding theoretical
predictions of these observables fit best to the actual measured values. The difficulty of this
endeavour was explained in section 3, where also two different approaches for the solution of
the problem were illustrated. Fittino follows a top-down approach, although the estimation of
the parameter start values may be done using bottom-up techniques. As the unconstrained
MSSM contains 105 parameters, a fit of the complete, unconstrained model was futile. In order
to retain the possibility to fit the parameters of the Lagrangian density, all complex phases,
intergeneration mixing and mixing in the first two generations are set to zero, such that only 24
parameters remain [35]. In addition, high scale models like the GMSB, AMSB and mSUGRA
model [24] can be fitted, which leaves even a smaller number of fit parameters.

Fittino is steered with an input file, which contains all used observables, the model and the
parameters to be fitted. The measured values and the uncertainties need to be given for all
observables. The uncertainties are assumed to be Gaussian for all observables and can be given
as the sum of several distinct uncertainties. This has the advantage that the individual sources
for the uncertainties can be named, and uncertainties of distinct observables arising from the
same source (for example the jet energy scale) can be treated as 100% correlated. For the model
parameters, start values and estimated uncertainties can be given. In addition, some switches for
the fitting algorithms are set in the input file. In the current version, sparticle masses, branching
ratios and production cross sections in electron-positron collisions can be used as observables.
Furthermore, a number of already measured, so called Low Energy (LE) observables can be
used, such as the anomalous magnetic moment of the muon (g − 2)µ [66, 67], or the branching
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fraction BF (b → sγ) [68], which are sensitive to supersymmetric contributions. The sparticle
masses can either be used directly, or embedded in kinematic edges, such as the one discussed
in the previous chapter. Fittino currently knows the formulae for the most kinematic edges and
kinks that may be measured at the LHC.

The fitting procedure is schematically shown in figure 6.1. Starting with the initial values for
the parameters to be fitted, either obtained by tree-level estimates or as given in the input file,
various external programs are called for the prediction of the used observables at the current
point in the parameter space. For the SUSY observables, this is currently done with the program
SPheno [36], while the LE Observables are calculated with the Mastercode package [69], which is
a combination of SoftSUSY, FeynHiggs [70], SuperIso [71, 72], DarkSUSY [73] and MicrOMEGAs
[74, 75]. The predicted values are then compared to the given “measured” values, and a χ2 is
calculated. Depending on the chosen fitting algorithm, Fittino jumps to a new point in the
parameter space, for which a χ2 is calculated in exactly the same way. By repeating this
procedure until a convergence criterion is fulfilled or a termination condition is reached, the
central values of the fit parameters are found. The final step is then the determination of the
uncertainties on the best-fit values, which is done with MINOS.

Figure 6.1: Schematics of the Fittino loop for the determination of the best-fit values. The
communication between Fittino and the theory codes is done via the SUSY Les Houches file
format. The input file contains information about the fitting algorithm(s) to be used and
their configuration in addition to the observables, their uncertainties and the model with its
parameters. Furthermore, switches for the output can be set.

Fittino offers three different methods for the determination of the best-fit parameters, the first
of which is a MINUIT minimisation of the χ2 function. As the MSSM parameter space is of high
dimension, this can be done by performing fits in several subsectors of the MSSM parameter
space first with most parameters fixed, before a global fit of all parameters is executed. The
slepton or the squark mass parameters together with tanβ, or the stop and sbottom mixing
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parameters are examples for parameter subsectors. However, due to the high dimensionality of
the parameter space, more sophisticated techniques were implemented. One of these techniques,
a MCMC has already been introduced in the previous section. In the present thesis, the third
method, an implementation of a simulated annealing algorithm, is used. This is described in a
bit more detail now, where the description is essentially taken from [35].

The basic idea of simulated annealing is to treat the χ2-surface in the parameter space as a
potential and to define a temperature t, from which the probability to jump to a certain point
in the parameter space can be calculated. After the calculation of the χ2 for the initial set of
parameter values, each parameter Pi is varied within its assumed uncertainty (which is either
given in the input file or determined by the tree level estimates) ten times. From the standard
deviation of the corresponding χ2-distribution, the initial temperature

t0 =
1

2
σχ2 (6.1)

is derived. The value of t0 can as well be given by hand in the input file. Now, each parameter
is varied once and a new χ2

i is calculated after each variation. If χ2
i < χ2

i−1, the new point is
accepted and the algorithm continues with the variation of the next parameter. If the new point
yields a worse χ2, i.e. χ2

i > χ2
i−1, a random number p ∈ [0, 1] is drawn and the new point is

accepted if

p < e−
(χ2

i −χ2
i−1)

t . (6.2)

Otherwise, the new point is rejected. This allows the algorithm to escape from local minima in
the χ2-surface. The variation of the parameters is repeated 20 times each, and for all parameters
the number of accepted new points is counted. In order to achieve a test range of

|χ2
i − χ2

i−1| ≈ t, (6.3)

the estimated uncertainties for each parameter are iteratively varied, such that the fraction of
accepted points fa = naccept/ntotal lies between 40% and 60%, which is achieved by

∆Pnew
i = ∆P old

i

(

2
fa − 0.6

0.4
+ 1

)

if fa > 0.6, (6.4)

∆Pnew
i = ∆P old

i

1
(

20.4−fa

0.4 + 1
) if fa < 0.4. (6.5)

For n parameters, this is repeated 3n times, or at least 60 times if n < 20. Finally, the
temperature is reduced by a constant reduction factor r < 1, and the whole procedure starts
over again. Typically, a reasonable choice is r ∈ [0.4, 0.6]. The algorithm aborts if the maximum
number of iterations as specified in the input file is reached, or if the variation of the χ2 during
the readjustment of the parameter step sizes is smaller than the variation within the four lowest
χ2 values found so far and the variation of all these values is smaller than 0.0001. If one of
these criteria is matched, a final MINUIT minimisation and MINOS uncertainty analysis is
performed.

The great advantage of using the simulated annealing algorithm is its capability to escape from
local minima and its little dependence on the start values. Furthermore, in the beginning the
algorithm may run over a large area in the parameter space due to high initial temperatures,
while by reducing the temperature, the granularity of the fit in the vicinity of the assumed
global minimum is increased. This ensures that the minimum found by the simulated annealing
algorithm is very close to the true minimum and the minimum found by MINUIT in the final
minimisation in most cases, which of course, comes by the cost of a relatively long run time.
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6.2 New Interfaces to RGE-Codes for Fittino

External programs are needed for the prediction of the observables corresponding to a given
point in the parameter space. So far, Fittino was only linked to SPheno for the prediction of
the SUSY mass spectrum and the branching fractions. If, for example a high scale model like
mSUGRA is fitted, SPheno solves the one- or two-loop renormalisation group equations and
calculates the SUSY mass spectrum at the EWSB scale QEWSB for a given set of high scale
parameter values. Masses are calculated to one-loop order, and two-loop corrections are added
to the neutral Higgs bosons and the µ-parameter. The calculation is iteratively continued until
a certain precision, which can be defined by the user, is reached. Finally, sparticle branching
ratios and supersymmetric contributions to (g − 2)µ and b → sγ are computed. For a possible
inclusion of future ILC measurements, SPheno also predicts SUSY production cross sections at
an electron-positron collider, taking into account initial state radiation and longitudinal beam
polarisation. A detailed description of the full functionality of SPheno can be found in [36].

It was mentionend in the previous chapter that for official ATLAS Monte Carlo, as well
as for the private samples that were used for the construction of the calibration curve, the
Fortran program Isasugra [56, 57] was used. If pseudo measurements of SUSY observables from
analyses on this Monte Carlo were used as an input for Fittino, shifts in the best-fit values of the
parameters with respect to the initial input values for Isasugra are expected due to differences
between Isasugra and SPheno.

SoftSUSY and SuSpect are two additional packages which solve the RGEs and compute the
SUSY couplings and masses at low scale for a given high scale input. Due to small pairwise
differences between these codes, essentially four different sparticle spectra are obtained for the
same given input. Therefore four different sets of best-fit parameters will be obtained when
performing four individual fits of the Lagrangian parameters to the same measurements, each
using one of the four spectrum calculators. These give rise to additional uncertainties on the
parameters.

It is therefore essential to study the impact of the differences between Isasugra, SoftSUSY,
SPheno and SuSpect on the values and uncertainties of the best-fit parameter values obtained
by Fittino. Especially for large values of tanβ and m0 the differences in the predictions are
known to become large [76]. Nevertheless, even if only small differences appear in the mass
spectrum itself, the differences might become significant in the combination of the masses to
more complex expressions like (5.7). It is the intend of this chapter to provide a first insight
into these systematic uncertainties on the central parameter values obtained with Fittino, when
a number of possible LHC measurements is used as input for the fit of an mSUGRA Lagrangian
density.

For this purpose, the Fittino source code had to be extended in order to provide a link between
Fittino and SoftSUSY /SUSY-HIT. However, an interface for Isasugra was not added, as the
communication between Fittino and the external programs is done via the SUSY Les Houches
Accord (SLHA) file format [77], which could not be used as an input for the available version
of Isasugra.

6.2.1 Implementation of the new Interfaces

The SUSY-HIT Interface

The SUspect-SdecaY-Hdecay-InTerface (SUSY-HIT ) is a package consisting of SuSpect [38] as
a spectrum calculator, and the Fortran codes SDECAY [78] and HDECAY [79], which calculate
decay widths and branching ratios of sparticles and MSSM Higgs bosons, respectively. Given
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a general SUSY-HIT input file and an SLHA file which contains the SUSY breaking model
and the corresponding parameter values, and in addition some SuSpect specific switches, first
SuSpect is called for the calculation of the sparticle mass spectrum, after which SDECAY and
HDECAY are executed. Whenever it is necessary, numerical values are translated between the
MS and the DR scheme to retain consistency. SUSY-HIT can also be configured to leave out
the SuSpect call, if a sparticle spectrum in the SLHA format is provided by another spectrum
calculator. A more detailed description of the SUSY-HIT package is provided in [65].

The SUSY-HIT interface for Fittino is called if the value for the Calculator variable is set
to SUSPECT in the Fittino steering file. Fittino then writes the general SUSY-HIT input file,
requesting a call of SuSpect before SDECAY and HDECAY are called, and also an input file
for SuSpect in the SLHA format, which, amongst other things, contains the numerical values of
the current point in the parameter space. After the creation of the input files, SUSY-HIT is
executed in a child process of the main program, which waits for the child process to finish. If
a certain time limit, which can be set in the Fittino steering file, is exceeded, the child process
is killed and the χ2 is set to 1.1 · 1011, such that a new point in the parameter space can be
tested. This is a precaution to avoid that the spectrum calculator gets caught in an infinite loop,
which is known to happen in some rare cases when SPheno is used and could not be excluded for
SuSpect. If the SUSY-HIT run was successfull (i.e. it finished within the specified timelimit), an
SLHA output file is written, which is read by Fittino for the calculation of the χ2. Since Fittino
needs some SM parameters and observables, which the programs included in SUSY-HIT do not
write into their output by default, the SUSY-HIT routines were slightly changed to provide the
relevant output.

A scheme of the SUSY-HIT interface when using SuSpect as a spectrum calculator is shown
in figure 6.2(a).

The SoftSUSY Interface

For the inclusion of SoftSUSY, another interface was added to the Fittino source code. If the
variable Calculator is set to SOFTSUSY in the Fittino input file, Fittino creates an SLHA input
file for SoftSUSY, which is called in a child process, again. If SoftSUSY finishes the calculation
within the timelimit, the general SUSY-HIT input file is written, telling the program to use
the SLHA output of SoftSUSY as an input. The SUSY-HIT code is then executed, and the
input is read in by Fittino as for the SuSpect case. The cycle for a SoftSUSY call is shown
in figure 6.2(b). The SoftSUSY interface has been designed such, that in principle any other
code calculating decay widths and branching fractions for sparticles and MSSM Higgs bosons
can be used. Nevertheless, for the present study, only SDECAY and HDECAY as embedded
in SUSY-HIT were used, if necessary. As for SUSY-HIT, minor modifications to the SoftSUSY
code were necessary, such that it provides all output needed by Fittino.

The Electroweak Symmetry Breaking Scale

It should be noted here, that the SoftSUSY and SUSY-HIT interfaces in the current version
automatically set QEWSB = 1 TeV. QEWSB is the scale at which the EWSB conditions are
imposed during the calculation of the low energy parameters (before the sparticle spectrum
is calculated at this scale). By default, all spectrum calculators use an estimate for QEWSB

in the first iteration of the calculation, and later set QEWSB =
√
mt̃1

·mt̃2
. However, all the

codes used here allow the user to overwrite this default value, which had been applied for the
SPheno interface in the “original” Fittino version. For comparability reasons, the same has been
included in the new interfaces. This is at the moment hard coded in the Fittino source code.
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(a)

(b)

Figure 6.2: Schematic overview over the new interfaces. (a) When using SuSpect as a spectrum
calculator, only one external executable is called, which is SUSY-HIT. As usual, the commu-
nication between Fittino and SUSY-HIT is done via the SLHA format. The substructure of
SUSY-HIT is shown in the respective box. (b) shows the flow-chart for the SoftSUSY interface.
When SoftSUSY is used for the calculation of the SUSY spectrum, Fittino hands the current
parameter set to SoftSUSY via the SLHA, which creates a spectrum file in the SLHA format
for SUSY-HIT, which is called afterwards.

Trivial Tests of the Interfaces

For a simple, trivial test of the interfaces, pseudo measurements have been calculated with
SoftSUSY at the official ATLAS SU3 benchmark point and mSUGRA Lagrangians have been
fitted to these pseudo measurements using that very same spectrum calculator during the fit.
The same was done using SuSpect for both the input and the fit. Table 6.1 shows the list of input
observables, which at this point have been chosen disregarding their measurability at the LHC.
In addition, the uncertainties are rough and somewhat arbitrary estimates, as the only goal of
this test is the demonstration of the basic functionality of the interfaces. It has rather been paid
attention that the slepton-, squark- and neutralino/chargino sectors are all included, although
not all sparticles appear in the input file, of course. The simulated annealing algorithm with a
maximum number of 60,000 calls has been used for two independent fits with different parameter
start values, which were explicitly defined in the input file rather than being estimated by tree
level approximations. The first chosen set of start values equals the input values, i.e.

m0 = (100 ± 30)GeV m1/2 = (300 ± 90)GeV A0 = (−300 ± 650)GeV

tanβ = 6 ± 7 sgnµ = 1, (6.6)

where Fittino takes care that always tanβ > 0. The second set of start values was chosen as

m0 = (76 ± 30)GeV m1/2 = (331 ± 90)GeV A0 = (383 ± 650)GeV

tanβ = 13.2 ± 7.2 sgnµ = 1. (6.7)

These are approximately the best-fit values obtained by Fittino, if only LE observables are used
for the fit of an mSUGRA Lagrangian with fixed signµ = +1 using the Mastercode [80]. The
results for the fits are summarised in table 6.2, while the evolution of the parameters and the
χ2 during the run of the simulated annealing algorithm are shown in figures 6.3 and 6.4. From
these tables and figures it can be concluded that the interfaces to SuSpect and SoftSUSY are
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Observable Value (SoftSUSY ) Value (SuSpect)

αem 127.925 ± 0.016 127.925 ± 0.016
GF 1.166 · 10−5 ± 10−10 1.166 · 10−5 ± ·10−10

αs 0.1176 ± 0.0020 0.1176 ± 0.0020
mZ (91.1875 ± 0.0021) GeV (91.1875 ± 0.0021) GeV
mb (4.83 ± 0.17) GeV (4.83 ± 0.17) GeV
mt (172.4 ± 0.01) GeV (172.4 ± 0.01) GeV
mτ (1.77684 ± 0.00017) GeV (1.77684 ± 0.00017) GeV
mW (80.314 ± 0.025) GeV (80.480 ± 0.025) GeV

mh0
(109.5 ± 5.0) GeV (110.3 ± 5.0) GeV

mχ̃+
1

(223.7 ± 5.0) GeV (222.6 ± 5.0) GeV

mχ̃+
2

(476.6 ± 5.0) GeV (479.1 ± 5.0) GeV

mχ̃0
1

(118.8 ± 5.0) GeV (118.7 ± 5.0) GeV

mχ̃0
2

(223.2 ± 5.0) GeV (223.0 ± 5.0) GeV

mχ̃0
3

(458.5 ± 10.0) GeV (462.9 ± 10.0) GeV

mχ̃0
4

(474.0 ± 10.0) GeV (479.7 ± 10.0) GeV

mũR (639.3 ± 10.0) GeV (642.4 ± 10.0) GeV
mũL (654.4 ± 10.0) GeV (662.9 ± 10.0) GeV
mν̃e,L (216.8 ± 5.0) GeV (215.7 ± 5.0) GeV
mν̃τ,1 (215.1 ± 5.0) GeV (215.1 ± 5.0) GeV
mτ̃1 (151.6 ± 5.0) GeV (149.8 ± 5.0) GeV
mτ̃2 (232.5 ± 5.0) GeV (230.7 ± 5.0) GeV

mmax
ll

(
χ̃0

1, χ̃
0
2, µ̃R

)
(103.8 ± 5) GeV (103.2 ± 5) GeV

|mg̃ −mχ̃0
1
| (597.3 ± 10) GeV (598.9 ± 10) GeV

BF(χ̃0
2 → τ τ̃1) 0.266 ± 0.100 0.250 ± 0.100

BF(χ̃0
2 → eẽR) 0.0345 ± 0.0200 0.0298 ± 0.0200

BF(g̃ → bb̃1) 0.091 ± 0.020 0.086 ± 0.020

BF(b̃1 → bχ̃0
2) 0.268 ± 0.020 0.264 ± 0.020

Table 6.1: Observables used for the trivial tests of the interfaces. All mass sectors (squarks,
charged and neutral sleptons and gauginos/higgsinos) are included. Furthermore, four branching
ratios have been used to test the compatibility of the SDECAY and HDECAY output. The
given numerical values correspond to the SoftSUSY / SuSpect (masses) and SDECAY (branching
ratios) predictions for the ATLAS SU3 benchmark point. The uncertainties are only arbitrary
guesses.
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(a)

Name Start Best-Fit

m0[GeV] 100 99.7 ± 5.3
m1/2[GeV] 300 299.9 ± 2.5

A0[GeV] −300 −300.2 ± 40.5
tanβ 6 6.0 ± 1.4

(b)

Name Start Best-Fit

m0[GeV] 76 99.7 ± 5.3
m1/2[GeV] 331 299.9 ± 2.5

A0[GeV] 383 −300.2 ± 40.5
tanβ 13.2 6.0 ± 1.4

(c)

Name Start Best-Fit

m0[GeV] 100 99.9 ± 5.3
m1/2[GeV] 300 300.0 ± 2.5

A0[GeV] −300 −299.4 ± 37.8
tanβ 6 6.0 ± 1.3

(d)

Name Start Best-Fit

m0[GeV] 76 99.9 ± 5.1
m1/2[GeV] 331 300.0 ± 2.4

A0[GeV] 383 −299.4 ± 40.3
tanβ 13.2 6.0 ± 1.4

Table 6.2: Results for the trivial tests of the SUSY-HIT and the SoftSUSY interfaces. Tables
(a) and (b) show the results obtained with SoftSUSY for the two different start-points, tables
(c) and (d) quote the respective results for SuSpect.

working fine for fits of the mSUGRA model, although there are some phases during the fit in
which the simulated annealing algorithms gets stuck in regions with very high χ2. This is known
to happen when using SPheno as well, which means that it is not a fundamental problem of
the written interfaces. An explanation for the behaviour might be that the algorithm runs into
regions which are incompatible with the given observables. For example, if the µ̃R is heavier
than the χ̃0

2 in these regions, the prediction for the endpoint (5.7), which is used as an observable
here, yields “nan”, such that Fittino forces χ2 = 1.1 · 1011.
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Figure 6.3: The behaviour of the four parameters m0 in (a), m1/2 in (b), A0 in (c) and tanβ
in (d), during the run of the simulated annealing algorithm. The x-axis shows the number of
iterative steps, the y-axis the value of the respective parameter at this step. Although there are
regions at which the algorithm gets stuck in unphysical regions, the freeze-out of the parameters
can nicely be seen. Finally, (e) shows the behaviour of the χ2.
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Figure 6.4: The behaviour of the parameters when using SuSpect as spectrum calculator. (a)
shows m0, (b) shows m1/2, while (c) and (d) show A0 and tanβ. The evolution of the χ2 is
again shown in (e).
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6.2.2 Differences in the available RGE-Codes

Since this is not a thesis on the theory of supersymmetry, the main sources for the differences
between the four codes Isasugra, SPheno, SoftSUSY and SuSpect are described only very briefly
at this point. Some comparing plots are shown at the end of this section. One of the differences
between Isasugra and the other three codes is the use of different renormalisation schemes during
some parts of the calculation [76]. Moreover, the codes use different order loop-corrections for
the calculation of some of the spectrum sectors [76]. Finally, numerical differences in the initial
estimation for the bottom Yukawa coupling hb may lead to significant differences in the spectrum,
especially at large values of tanβ, while differences in the respective top Yukawa coupling ht

cause corresponding deviations for large m0 [81]. A more detailed treatment of the differences
can for example be found in [76] and [81].

In figures 6.5 and 6.6, a comparison of the mass spectra obtained with Isasugra, SoftSUSY,
SPheno and SuSpect is shown for one of the parameter points examined in the next section as
an example. Although the deviations observed in the prediction of the masses are mostly small,
they may lead to clear shifts in the central values of the parameters.
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Figure 6.5: Comparison of the prediction of the “light” sparticles’ masses according to Isasugra,
SPheno, SoftSUSY and SuSpect for the same mSUGRA input parameters. The differences,
although very small, can clearly be seen, especially for the heavy neutralinos, chargino and
Higgses, where SPheno and SuSpect show a tendency to slightly higher values.

6.3 Comparisons of Fit Results with SoftSUSY, SPheno and

SuSpect

For the comparison of the three software packages which can be interfaced to Fittino via the
SLHA format, a small interval on the m1/2-axis in the mSUGRA parameter space is examined.
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Figure 6.6: This diagram shows the comparison of the coloured sparticles’ masses as predicted
by Isasugra, SPheno, SoftSUSY and SuSpect for the same given mSUGRA parameters. For rea-
sons explained in chapter 2 these sparticles are typically heavier than the sleptons and gauginos,
such that absolute difference in the predictions are more obvious, here. For the superpartners of
light quarks, Isasugra and SPheno seem to predict higher values, while for the third generation
squarks SoftSUSY predicts lower masses than the three other spectrum calculators. If these
masses are used for the prediction of kinematic edges in invariant mass spectra from SUSY
decay chains, the shown differences may lead to significant deviations.

Eleven or twelve mass edges, which are expected to be measurable at the LHC given that the
respective parameter set is realised in nature, are used as an input; no LE observables are used.
Distributions for all parameters are obtained separately for each spectrum calculator. This
way, a detailed comparison of the central values and the uncertainties is provided following a
frequentist approach, and correlations between the best-fit values can be calculated.

6.3.1 Method

For each of the parameter points listed in table 6.3, the sparticle masses were calculated with
Isasugra7.79. From this mass spectrum, the desired mass edges were calculated and put into
the Fittino input file as pseudo measurements. This way, at least the central values of the
mSUGRA parameters obtained with SPheno, SoftSUSY and SuSpect can be compared to the
corresponding Isasugra values. It is obvious that, if Isasugra was used for both the calculation
of the pseudo measurements and the fit procedure, the mean value of the respective parameter
distributions were equal to the input values within statistical errors, just as it is the case for the
other calculators (see previous section). However, Isasugra uses QEWSB =

√
mt̃1

·mt̃2
, since

it was not possible for this code to specify the EWSB scale by hand. The error caused by
this inconsistency is absorbed in the calculation of the total uncertainties on the observables
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(see below). Details of the examined parameter space and the observables follows in the next
sections.

If Fittino is configured to calculate pull distributions, the input observables are smeared
according to a Gaussian distribution whose mean value and width correspond to the given ob-
servable value and uncertainty. For a single run, a random seed needs to be given to Fittino, from
which a single smeared set of observables is thrown and used for the fit of the model parameters.
If this is repeated for a reasonable number of different random seeds, the user gets absolute and
pull distributions for all observables and parameters. The pull distributions refer to the input
(start) values and the measured (estimated) uncertainties of the observables (parameters). For
the present study, only the absolute distributions have been used. From these parameter dis-
tributions the central value and the uncertainty can be determined. Since Fittino assumes all
uncertainties to be Gaussian, if the region in the parameter space is sufficiently smooth, the
distributions of the parameters are expected to be Gaussian, as well. The constitution of a
Gaussian parameter distribution from a Gaussian observable distribution is sketched in figure
6.7. However, the occurrence of side minima, unrecognised correlations between observables and
a non-continuous behaviour of the χ2-surface in the parameter space may cause non-Gaussian
parameter distributions. This may occur if for example the χ2 surface contains steps near
the best-fit values. If, as an example, a certain decay chain becomes kinematically available
with a high branching fraction within a small variation in the parameter space, a non-Gaussian
behaviour of the parameter distributions is expected.

The creation of parameter distributions offers several advantages for the comparison to be
performed here. The distributions obtained by using one spectrum calculator can be compared
with the distributions obtained by using the other calculators, such that shifts in the best fit
values and the uncertainties become directly visible. Furthermore, if a sufficiently large sample
of smeared observable sets is thrown, the linear correlation coefficients can be calculated. If
the differences in the best-fit values are pure systematic shifts, the results for the single fits are
expected to be highly correlated.

Each set of smeared observables was individually fitted using the simulated annealing algo-
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Figure 6.7: Example for the translation of a (a) Gaussian observable distribution into a (b)
Gaussian parameter distribution when pull distributions (not shown here) are calculated by Fit-
tino. However, the occurrence of side minima, unrecognised correlations between observables and
a non-continuous behaviour of the χ2-surface in the parameter space may cause non-Gaussian
parameter distributions.

73



6 Systematic Uncertainties in Fits of SUSY-Lagrangians with the Program Fittino

rithm with a maximum of 60,000 iterations for all three implemented spectrum calculators. This
corresponds to an average duration of one day per fit using SPheno, three days per fit when
using SoftSUSY and four days per fit when using SuSpect. The initial temperature for the fits is
calculated from the χ2 corresponding to the parameter start values, which are set to the Isasugra
input values, while the temperature reduction coefficient was set to 0.5. A total of 100 smeared
sets of observables were thrown for each of the used parameter points, which are discussed in
the following.

6.3.2 Parameterspace

The part of the mSUGRA parameter space for which toy measurements were created and fits
with each of the three usable RGE-codes were performed is listed in table 6.3. The fixed values
roughly correspond to the best fit values for an mSUGRA fit with fixed signµ=+1, if only LE
observables are used for the fit, whose SUSY corrections are predicted by the Mastercode. The
m1/2-interval roughly corresponds to the 1-σ-interval obtained by this fit. The details for the
LE fit can be found in [80]. A variation of m1/2 for this comparison has been chosen as the
1-σ-interval is of an appropriate size, such that with a step width of ∆m1/2 = 10 GeV a total
of 17 parameter points can be compared. This way, a reasonable range in the mass spectrum
is examined, while a realistic though significant amount of computing power is needed - a total
of 5100 fits had to be performed (3 Calculators and 100 smeared observable sets per parameter
point), which was done on the LHC computing grid. Furthermore, the cross section at the LHC
for all points under investigation here is high enough to provide the used set of observables at
an integrated luminosity of 300 fb−1, as shown in figure 6.8.

Parameter Value/Range

m0 70 GeV
m1/2 [250,410] GeV

A0 400 GeV
tanβ 13
signµ +1

Table 6.3: Parameter space used for the comparison of the three RGE-codes. Only the gaugino
mass parameter was varied, the other parameters were fixed near the best fit values obtained
by fitting the mSUGRA Lagrangian to LE observables, only.

6.3.3 Observables

A number of observables which are expected to be measurable at the LHC when a dataset of
300 fb−1 at

√
s = 14 TeV has been collected [82] were used as an input for the fit. First, the

mass of the lightest neutral Higgs boson, mh0
is used, which could for example be measured in

the decay h0 → ττ [59]. The mass of the lightest chargino, mχ̃+
1

is the second mass which is

used directly. By exploiting the decay chain

q̃L → qχ̃+
1 → qWχ̃0

1 → qqqχ̃0
1,

this can be measured up to a two-fold ambiguity [83]. Three edges of the type discussed in the
previous chapter are used for measurements in the neutralino and slepton sector. These are
measured by determining the kinematic endpoints in the mµµ and mττ spectra arising from the
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Figure 6.8: Total SUSY production cross sections at the LHC for
√
s = 14 TeV with respect

to m1/2, for fixed m0 = 70 GeV, tanβ = 13, A0 = 400 GeV and signµ = +1. It turned out

that the behaviour is well described by the ansatz σtot(m1/2) = Const #1

mExponent

1/2

− Const #2
m1/2

. This can

qualitatively be understood, as with increasing m1/2 the gluino mass increases (as well as, by
loop corrections, the squark masses). Since the dominant SUSY production processes at the
LHC are squark and gluino production, the cross section decreases with increasing m1/2.

decay chains

χ̃0
2 → µµ̃R → µµχ̃0

1,

χ̃0
2 → τ τ̃1 → ττ χ̃0

1 and

χ̃0
4 → τ τ̃2 → ττ χ̃0

1.

(6.8)

The endpoints in the ditau spectra can of course not be measured directly, as the taus undergo
hadronic or leptonic decays including neutrinos and are not measured directly. Nevertheless,
techniques have been developed to derive the endpoint from the spectra of the visible decay
products [59]. An analysis of the decay chain

g̃ → bb̃1,2 → bbχ̃0
2 → bbll̃R → bbllχ̃0

1

yields a measurement of mg̃ −mχ̃0
1

[82]. Information about the charged sleptons is completed

by measuring
√

m2
l̃L

− 2m2
χ̃0

1

from electroweak s-channel Z/γ exchange dislepton production and
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the subsequent decay

l̃L → lχ̃0
1

using the stransverse mass mT2 [84, 85]. For the superpartners of the right-chiral quarks, by

using the stransverse mass again, roughly
√

m2
q̃R

− 2m2
χ̃0

1

can be measured exploiting the decay

[80, 82]

q̃R → qχ̃0
1.

The measurement of an edge in the invariant mass distribution of the quark and one of the
leptons originating from the squark decay,

q̃L → qχ̃0
2 → qll̃R → qllχ̃0

1

includes information about the superpartners of the left-chiral quarks in the fit. This variable
is referred to as mhigh

lq , and is defined as

mhigh
lq = max

(

mnear
lq ,mfar

lq

)

, (6.9)

where near and far refer to the lepton, as in the previous chapter. Instead of using mnear
lq and

mfar
lq , the spectra of mhigh

lq and correspondingly mlow
lq are typically used since it is impossible

to assign the attributes near and far to the leptons correctly on data. Finally, the stop and
sbottom sector are included in the comparison via endpoints in the invariant mass distribution
of the top-bottom pair originating from the decay chains [82, 86]

g̃ → tt̃1 → tbχ̃+
1 and (6.10)

g̃ → bb̃i → tbχ̃+
1 .

All edges are sufficiently separated from each other for the parameterspace used here, such
that no branching ratio weighted combinations need to be used, as it is the case for the SPS1a
benchmark point, for example [80]. The endpoints in the mtb spectra are in principle analogons
of the edges in the invariant dilepton mass spectra, but due to the high top mass the high
energy approximation must not be applied for the calculation of the numerical values, such that
in principle (5.4) has to be used instead of (5.5). This complicates the final formulae for the
endpoints, which can be found in [86].

With this choice of observables, a wide range of the SUSY mass spectrum is covered. Infor-
mation is missing only about the χ̃0

3, the χ̃+
2 the t̃2 and the complete sneutrino sector, as these

will most likely be hard to measure at the LHC with sufficient accuracy. In addition, default
values of some SM observables, such as the masses of the Z, W, τ and the b-quark, as well
as the strong and electromagnetic coupling constants αs and αem are used (Fittino would use
default values for these, anyway). The evolution of the observables as predicted by Isasugra
with respect to m1/2 is shown in figure 6.9. The variable mmax

tb (t̃1) was not used for m1/2 < 280
GeV, as the necessary decay chain is kinematically forbidden in this region. Furthermore, for
m1/2 > 350 GeV, the observable mmax

ττ (χ̃0
2, χ̃

0
1, τ̃1) could not be used as the respective decay

chain is forbidden for these points, too. Together with the SM observables, a total of 21 or 20
observables have been used.

The estimation of experimental uncertainties mainly relies on [80] and [82]. The experimen-
tal uncertainties are estimated using the expected uncertainties at the SPS1a parameter point.
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(a) (b) (c)

Figure 6.9: The evolution of the used observables as predicted by Isasugra with respect to
m1/2. (a) shows the evolution of the observables with the largest numerical values. These are
√

m2
q̃R

− 2m2
χ̃0

1

(squares), mg̃ −mχ̃0
1

(circles) and mhigh
lq (q̃L, χ̃

0
2, l̃R, χ̃

0
1) (triangles). These observ-

ables show a linear dependence on m1/2 in first order. (b) shows the observables with medium

numerical values, which are mmax
tb (t̃1, g̃, χ̃

+
1 ) (filled stars), which is available for min

1/2 > 270

GeV only, mmax
tb (b̃1,2, g̃, χ̃

+
1 ) (crosses for b̃1, triangles pointing upwards for b̃2), m

max
ττ (χ̃0

4, τ̃2, χ̃
0
1)

(stars) and mχ̃+
1

(triangles pointing downwards). Finally, (c) shows the observables with the

lowest numerical values. These are
√

m2
l̃L

− 2mχ̃0
1

(circles), mh0
(triangles), mmax

ll (χ̃0
2, l̃R, χ̃

0
1)

(squares) and mmax
ττ (χ̃0

2, τ̃1, χ̃
0
1) (stars).

These were scaled with the ratio of the respective cross sections to get rough estimates for the
parameter points used for this comparison. Furthermore, for all observables, an additional un-
certainty was taken into account for this first comparison. For each value of m1/2, all observables
are predicted using all four spectrum calculators. The maximum of the pairwise deviations

∆Omax = max
i,j

(|Oi −Oj |), (6.11)

where i and j indicate the spectrum calculators, was then added to the experimental uncertainty
in quadrature. For most observables, this contribution is in the same order as the experimen-
tal uncertainty. The SUSY observables, their predictions according to Isasugra, and the used
uncertainties are listed for m1/2 = 330 GeV in table 6.4, as an example.

Finally it must be stated that for this study no assignment ambiguities (see, for example,
[80]) for the mass edges are taken into account. If only a single ambiguity is considered in the
SPS1a benchmark scenario, it was shown that for Lint & 300 fb−1, the probability to actually
take the wrong decision is about zero [80]. Although this picture might change if more than one
ambiguity is taken into account, for the present study, all edges were assigned correctly.

6.3.4 Results

Approximately 100 smeared observable sets were thrown for each parameter point under inves-
tigation here. The exact number does not always equal 100 for various reasons. While at some
points, single jobs failed due to problems on the LHCG, for other points more statistics was
created for various reasons. The results of all fits for the parameter point at min

1/2 = 330 GeV

are shown in figure 6.10 as an example. A fit of the χ2-distributions is in very good agreement
with the input, i.e. 21 observables, 4 parameters and 0 bounds, which yields 17 degrees of
freedom. Furthermore, a Gaussian distribution could be fitted to the parameter distributions,
such that a mean and a width for each parameter could be extracted. The mean could then be
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Observable Value [GeV] σest
exp [GeV] ∆Omax [GeV]

mh0
110.33 0.13 0.60

mχ̃+
1

240.51 12.91 0.81

mmax
ll (χ̃0

2, l̃R, χ̃
0
1) 86.31 0.12 6.02

mmax
ττ (χ̃0

2, τ̃1, χ̃
0
1) 55.01 6.17 10.67

mmax
ττ (χ̃0

4, τ̃2, χ̃
0
1) 282.93 7.87 5.66

mg̃ −mχ̃0
1

653.47 14.89 5.19
√

m2
q̃R

− 2m2
χ̃0

1

671.67 11.17 5.92
√

m2
l̃L

− 2mχ̃0
1

152.27 6.82 7.67

mhigh
lq (q̃L, χ̃

0
2, l̃R, χ̃

0
1) 568.73 5.62 11.44

mmax
tb (b̃1, g̃, χ̃

+
1 ) 414.23 5.01 5.83

mmax
tb (b̃2, g̃, χ̃

+
1 ) 379.64 6.16 9.11

mmax
tb (t̃1, g̃, χ̃

+
1 ) 454.76 5.01 11.61

Table 6.4: Used observables and their values as predicted by Isasugra, their assumed exper-
imental uncertainties for 300 fb−1 at

√
s = 14 TeV and the maximum difference between the

predictions of all four spectrum generators for m1/2 = 330 GeV.

interpreted as the overall best-fit value and the width of the Gaussian could be interpreted as
the uncertainty on the central value.

The results of all fits are summarised in figure 6.11. Clear shifts of the best-fit values can
be seen for all fitted parameters. For A0, the central values obtained using SPheno tend to
be higher than the values obtained with SuSpect, which generally yields higher values then
SoftSUSY. For m0, in general SuSpect yields higher values than SoftSUSY and SPheno. Such
a general tendency is however not observed for m1/2 and tanβ. Nevertheless, in subregions
of the used parameter space, a clear “hierarchy” between the results obtained with the three
RGE-codes is visible. For example, for min

1/2 ≤ 350 GeV, fits using SPheno seem to yield the

lowest best-fit tanβ, while for min
1/2 ≥ 360 GeV, the value obtained using SPheno is always

larger than the best-fit values obtained with SoftSUSY and SuSpect. It remains to mention that
all best-fit values agree with each other within their estimated uncertainties. At this point, this
is clearly not a surprise, as the deviations between the observable predictions using the different
spectrum calculators have been used as uncertainties on the observables for the fit. Appendix
B contains a short comparison of the best fit values obtained by using estimated experimental
uncertainties only.
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Figure 6.10: (a) χ2-distributions and (b)-(e) the parameter distributions, for the fits performed
at min

1/2 = 330 GeV. At this point, all parameter distributions are well described by a Gaussian.

Clear differences in the means of the respective distributions can be seen for m0 in (b). The
shifts for m1/2 are also visible, although these are not that obvious as shown in (c). In the
distributions of the parameter A0 plotted in (d), SPheno and SuSpect show good agreement,
while SoftSUSY is a little off with respect to these. For tanβ finally, all three codes show
small disagreements as plotted in (e). However, the χ2 distributions for the fits show perfect
agreement with the input (17 degrees of freedom) for all three interfaces, as shown in (a), which
a posteriori justifies (6.11).
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Figure 6.11: Summary of the comparisons of SPheno, SoftSUSY and SuSpect. (a) For the χ2-
distributions, the fitted number of degrees of freedom with its statistical uncertainty is shown.
A fair agreement between the input and the fitted values is observed, although at some points,
SuSpect seems to yield lower χ2 values as expected, while fits with SPheno have a higher average
χ2 as expected. For the parameter distributions of m0 in (b) and A0 in (d) a clear hierarchy
between the three codes can be seen over the whole examined parameter range, while this is not
so evident for m1/2 in (c) and tanβ in (e).
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The parameter m0 turned out to be problematic here at two parameter points. Formin
1/2 = 260

GeV and min
1/2 = 270 GeV, the m0 distributions seem to show a second maximum when SuSpect

is used for the fit, such that the fit of a Gaussian to the distribution yields unreasonable values.
This is shown in figure 6.12, which indicates that this might also be the case if SoftSUSY is
used, while the effect is not that large, though still visible, for SPheno. It remains to be seen if
this is a statistical fluctuation or a real side minimum, since a significant increase of statistics,
and therefore a significant amount of computing power is needed to clarify this.

The question is whether the observed differences in the central values can be interpreted as
systematic shifts. This was studied by examining the correlations between the results obtained
by fitting the parameters using each of the three RGE codes with the same smeared set of
observables. Samples for the two-dimensional parameter distributions are shown in figure 6.13
and the extracted correlation coefficients for each parameter and each combination of spectrum
calculators are shown in figures 6.14. The observed correlations are high, as it was expected
if the shifts in the central values were systematic shifts. However, a problematic region in the
parameter space was found here.

By examining the correlation coefficients for m0, a “step” is observed around min
1/2 = 310

GeV. The corresponding two-dimensional plots for min
1/2 = 250 GeV with increased statistics to

verify this effect are shown in figure 6.15. From these plots it can be seen that besides the main
branch which reflects a high correlation, an anticorrelated side branch emerges.

In the first place, a connection between the anticorrelated branch and the usage of the ob-
servable mmax

tb (t̃1) was suspected, as the side branch is most distinctive at the points which
kinematically forbid the required decay chain, and less distinct in the regions where the decay is
allowed, but has only a small phase space available. On the other hand, it completely vanishes
for even higher values of min

1/2. It was therefore doubted that the inclusion of the observable

mmax
tb (t̃1) avoided the occurrence of the this side branch, as the sensitivity of the fit to m0 is

increased if mmax
tb (t̃1) is used.

To test this hypothesis, another series of fits was performed for the point at min
1/2 = 350 GeV,

at which the decay chain (6.10) is kinematically allowed, without using the observable mmax
tb (t̃1).
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Figure 6.12: Distributions for the parameter m0 for the fits performed with an input of
min

1/2 = 260 GeV (a) and m1/2 = 270 GeV (b). At both points, the distribution obtained
with SuSpect is clearly not well described by a Gaussian. This seems to be the case for the
distributions obtained by SPheno and SoftSUSY, too. The reason for this remains unknown at
this point.
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Figure 6.13: Two dimensional distributions for the best-fit parameter values in the “calculator-
space”. Figure (a) shows the correlation between mSPheno

0 and mSoftSUSY
0 , (b) shows the cor-

relations between mSPheno
1/2 and mSuSpect

1/2 . For both parameters, the best-fit values are highly
correlated. This matches the expectation for systematic shifts.

The resulting plots for the m0 −m0-correlations are shown in figure 6.16. The anticorrelated
branch is not observed in the two-dimensional distributions for the fits neglecting mmax

tb (t̃1),
such that it can tentatively be concluded that it is not due to the inclusion of this observable
that the anticorrelation vanishes. Certainly, this has to be examined in a more rigorous way,
which is out of the scope for the present thesis.

Finally, it can be stated that the new interfaces for Fittino work quite well for fits of mSUGRA
Lagrangians and that they can be employed for studies of systematic uncertainties on best-fit
values when using mass related SUSY observables.

In a first study of these systematic shifts, first hints for problematic parameters and regions
in the mSUGRA parameter space have been found, which require a more detailed analysis.
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Figure 6.14: Correlation coefficients for the best-fit values for (a)-(d) all parameters, and
(e) the χ2 for all examined parameter sets. For all parameters and the χ2, the correlation
coefficients are well above 60%, which is expected. However, some features show up which need
further investigation. For example, the step at m1/2 ≈ 310 GeV for m0 may indicate that there
is some problem in this region.
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Figure 6.15: For min
1/2 = 250 GeV, in addition to the clearly visible “main” branch, which

reflects a high correlation between mi
0 and mj

0, where i and j denote the spectrum calculators,
an anticorrelated “side” branch emerges. For the plots shown in (a)-(c), 290 different random
seeds have been used, and the “side” branch seems to be of non-statistical nature.
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Figure 6.16: Correlations between the m0 best-fit values for m1/2 = 350 GeV for all available
used input observables (a)-(c), and for all used observables without mmax

tb (t̃1) (d)-(f). This
parameter point does not show the anticorrelated “side”-branch. As it was suspected that
the inclusion of this variable might be connected to the absence of the anticorrelated branch,
parameter distributions have been created with Fittino neglecting this observable at a point at
which it is available. As no “side”-branch can be seen in (d)-(f), it can be concluded that this
first suspicion was not correct.
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7.1 Summary

A study on the measurement of a SUSY observable in a best case scenario and a first insight
into systematic uncertainties for SUSY parameter reconstruction was presented.

The SUSY observable examined in the present thesis is a kinematic endpoint in the invariant
dimuon mass spectrum of the SUSY decay chain

χ̃0
2 → µ̃Rµ→ χ̃0

1µµ.

It was assumed that the SM background can be rejected with a purity and signal efficiency of
100%, and a function for the extraction of the endpoint, assuming a constant resolution factor
for the dimuon mass, was tested. A total of 28 points in the mSUGRA parameterspace were
taken and fits for the extraction of the endpoint were performed, taking into account a model
for the supersymmetric and combinatorial background. This model turned out to be inadequate
for 5 of these parameter points after a cut on the transverse momenta of the muons had been
applied. The reason for this was shown to be the vicinity of the endpoint to the mass of the Z0,
which occurs at significant numbers in the SUSY decay chains at these points. For a number
of reasons, the Z0 mass peak was not included in the background model, such that these 5
parameter points were neglected, and 18 of the remaining points were randomly chosen for the
determination of a calibration curve for the estimator of the kinematic endpoint.

The last 5 parameter points served as a control sample for the calibration curve and the
calibrated, fitted estimators for the endpoint showed very good agreement with the theoretical
values. However, the parametrisation of the calibration curve is in agreement with a straight
line of slope 1 through the origin within 2σ. It could thus be concluded, that the assumption of
a constant resolution factor for the dimuon mass is a good simplification and yields an unbiased
estimator for the kinematic endpoint.

Furthermore, two new interfaces for the program Fittino have been written and successfully
tested, allowing for a first study of systematic uncertainties on the central values of the SUSY
Lagrangian parameters extracted from toy and possible future data. The SUSY spectrum cal-
culators SoftSUSY and SuSpect, as well as the decay calculators SDECAY and HDECAY were
linked to Fittino, which by default uses SPheno for the prediction of SUSY observables.

By performing toy fits of the four continuous mSUGRA parameters to the same pseudo-data
at 17 different mSUGRA parameter points using all three spectrum calculators separately, shifts
in the best-fit values were seen. These could be explained by small pairwise differences in the
predictions obtained with the three RGE codes for the same input. A detailed analysis of the
fit results, using Fittino’s capability to smear the input observables and generate parameter
distributions, showed that these shifts are of systematic nature, rather than random deviations,
which met the expectations.

Within the context of this study, a problematic region in the mSUGRA parameter space has
been identified, as the two dimensional m0,i −m0,j pull distributions, where i and j denote the
three RGE packages, showed an anticorrelated branch for i 6= j for some of the used parameter

85



7 Summary and Outlook

sets. A first attempt to trace the emergence of this branch back to the usage of an edge in the
top-bottom spectrum of a gluino decay chain showed no direct connection.

It can be summarised that the newly written Fittino interfaces work well for fits of mSUGRA
models and have already been proven to allow for a wide range of interesting studies with the
program Fittino.

7.2 Outlook

The examination of the estimator for the kinematic endpoint is of course far from being complete.
SM background and a more refined technique for the extraction of the signal spectrum need to
be examined, as well as additional uncertainties like the impact of the lepton energy scale,
and trigger efficiencies. One technique for the reduction of any supersymmetric background
was already tested. The results obtained with the method of statistical subtraction showed a
significant deviation from the expectations, such that the more robust cut method had been
used to determine the goodness of the estimator. This has to be studied further.

There is as well some more work to be done on the written Fittino interfaces. The functionality
of the SoftSUSY +SUSY-HIT interface was successfully tested for fits of mSUGRA, GMSB and
AMSB models, while the SUSY-HIT interface at the moment is known not to work for fits of
GMSB models when SuSpect is being used as a spectrum calculator. This problem was traced
back to SuSpect itself and is not directly related to the written interface. There are more models,
for example the MSSM18 and MSSM24 which are generally supported by Fittino, but for which
the new interfaces were not yet successfully tested. Problems when fitting these models using
SoftSUSY or SuSpect can mainly be ascribed to the communication between Fittino and the
external codes. For example, different phase conventions for SUSY masses may disturb the
communication between SoftSUSY and SUSY-HIT. These problems were mainly identified and
removed already, but a number of yet unsolved problems still remain.

However, as the Fittino collaboration decided to completely rewrite the whole program from
scratch in a more object oriented way, to allow for an easy extension of the code and an easy
inclusion of new models, like the E6MSSM [87], this work will be done in the near future during
the recoding of Fittino.

On the physics side, there is also a number of things to do, which are directly connected to the
work presented in this thesis. A detailed analysis of the anticorrelated branch in the m0,i −m0,j

needs to be performed and the origin of this branch has to be identified. In addition, if only
expected experimental uncertainties for a collected data set of 300 fb−1 are used for the fits, the
systematic shifts for m0 exceed the widths of the single parameter distributions by one order of
magnitude, roughly. The shifts are not that large for the other mSUGRA parameters. Although
an agreement within one standard deviation is not expected when theoretical uncertainties on
the observables are not included, the parameter m0 seems to require a detailed examination here,
as well. However, it is most likely that the differences between the SUSY spectrum calculators
become smaller long before such a large dataset has been collected, as the knowledge about
SUSY, if it turns out to exist, will certainly increase until then.

Furthermore the possibility to fit the electroweak symmetry breaking scale QEWSB as a nui-
sance parameter has recently been added to Fittino. The impact of this on the differences
between the results obtained with the three RGE packages would be interesting to know, as
well.

A comparison of misinterpretation probabilities could also be performed with the new inter-
faces. For certain configurations in the mSUGRA parameterspace for example, the slepton in
(5.1) could be both the l̃R and a l̃L. In such a scenario, two endpoints could be measured in the
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dilepton spectrum, given that both decays acquire a sufficiently high branching fraction. A pri-
ori, it was not clear which edge has to be assigned to which slepton. One method to resolve this
is described in [80]. There is a significant number of such assignment ambiguities when dealing
with SUSY observables, and a detailed analysis is currently being performed by members of the
Fittino collaboration using SPheno only. A comparison of the available spectrum and decay
calculators would be desirable here, too.

If nature turns out to be supersymmetric, it is expected that first fits of SUSY Lagrangians
can be performed with a dataset of 1fb−1 at

√
s = 14 TeV already, which in a very optimistic

scenario might be available end of 2013 or early 2014. Given that SUSY is realised in nature,
the first sparticles might already have been produced at the LHC, as in December 2009, with
the first collisions at the so far unreached center of mass energy of 2.36 TeV, physicists at
CERN have successfully started to explore strange new worlds, to seek out new particles and
new interactions, to boldly go where no man has gone before.
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A Statistical Subtraction of Combinatorial

Background

A common approach for a better separation of signal and background with respect to the method
used in chapter 5 is a statistical subtraction of opposite sign opposite flavour (OSOF) lepton
pairs [59]. This means, that the invariant mass spectrum for electron-muon combinations of
opposite charge is determined and subtracted from the dimuon spectrum taking into account
a scaling factor of 1/2. According to lepton universality, the remaining spectrum should be
free of combinatorial background within statistical limits. This method has been tested on
generator level here. The invariant mass distribution of the combinatorial background as well as
the electron-muon combinations turned out to be well described by an exponential for mll & 30
GeV. However, the results were not satisfactory. This is shown in a little detail in figure A.1,

where a loose cut on the transverse momentum has been applied, p
e/µ
T > 5 GeV, to get rid of

very soft leptons.
For the study presented in chapter 5, this technique has thus not been used. A more refined
treatment might resolve this problem. As an example, the pT cut could be slightly increased.
However, it was decided that the method presented in chapter 5 was sufficient for the first test
of the estimator.
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Di−Lepton−Mass [GeV]
20 40 60 80 100 120 140

E
nt

rie
s 

/ 3
 G

eV

0

200

400

600

800

1000 MuonMuon

MuonElectron

(a)

2)µ µ a∆ + (2) eµ a∆() /  µµ - a
 eµ

(a
5 10 15 20 25 30

E
nt

rie
s 

/ 0
.8

3

0

1

2

3

4

5

6

7

8

(b)

2)µ µ b∆ + (2) eµ b∆() /  µµ - b
 eµ

(b
-10 -8 -6 -4 -2 0 2 4 6 8 10

E
nt

rie
s 

/ 0
.5

0

1

2

3

4

5

6

(c)

Figure A.1: (a) shows the invariant dilepton mass spectra for combinatorial muon-muon
background and for muon-electron combinations (generator level). For mll > 30 GeV, both
distributions can be fitted with an exponential, which has two parameters: the slope b of the
exponential and a constant a (normalization factor). The diagrams (b) and (c) summarize the
results of the performed fits. Pull distributions for the fitted parameters have been created. The
pull for the constant a qualitatively meets the expectation, as a higher number of muon-electron
combinations than background muon-muon combinations is expected. However, a clear bias in
the pull for the exponential slope b can be seen. This is not expected and needs to be studied
further.
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B Fits of mSUGRA Lagrangians Using

Estimated Experimental Uncertainties

Only

Figure B.1 shows the m0- and A0-distributions obtained by Fittino when only estimated exper-
imental uncertainties for an integrated luminosity of 300fb−1 at

√
s = 14 TeV are used for the

fits. The deviations are significant. These plots show that a comparison like the one presented
in chapter 6 is important if SUSY Lagrangians are fitted to data. Of course the differences be-
tween the three spectrum calculators are expected to decrease long before a dataset of 300fb−1

has been collected. Nevertheless, first fits might be possible using observables extracted from
1fb−1. At this points, a comparison of the fit results obtained using either SPheno, SoftSUSY
or SuSpect is of importance for the determination of the parameter uncertainties.
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Figure B.1: Distributions for (a) m0 and (b) A0 when using estimates for the experimen-
tal uncertainties with a dataset of 300fb−1 only. The deviation between the central values is
significant, especially for the parameter m0.
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