The Precision Higgs Era and Beyond...

Stan Lai Georg-August-Universität Göttingen 02 July 2019

Stan Lai

Dresden Colloquium Talk

02. July 2019

My wife Betty

Our nephew: Nagsen Chao (born Sept 2017)

In 2012, the Higgs Boson was like....

.....a newborn child

The world celebrated its arrival

- predicted in 1964
- serious experimental searches since 1998
- discovery in 2012

....and now its 7 years old

we know much more about the Higgs boson

- a "personality" has developed
- we know more and can do more with the Higgs boson than in 2012

We have already reached the *"precision era"* of Higgs physics

- precision mass measurements
- extensive coupling measurements
- quantum numbers (spin, CP)
- searches for rare decays
- measuring the self-coupling

The Standard Model of Particle Physics

Describes physics at the fundamental level

Matter particles

• quarks and leptons (3 generations)

Force carriers

• Forces mediated via vector bosons (except gravity)

All particles and forces described in a *unified, symmetric* theory ⇒ but all particles must be *massless*

But particles **DO** possess mass

A *Higgs field* is necessary to explain masses for fundamental particles

The Brout-Englert-Higgs Mechanism (1964)

Higgs field: scalar field Φ with potential: $V(\Phi) = \mu^2 \Phi^* \Phi + \lambda |\Phi^* \Phi|^2$ (Higgs-field)

For $\lambda > 0$, $\mu^2 < 0$: "Spontaneous Symmetry Breaking"

Field Φ has a non-zero value in the vacuum: $\mathbf{v} = (-\mu^2/\lambda)^{1/2} \sim 246 \text{ GeV}$ (from G_F)

Particles acquire mass through coupling to the Higgs field: **m** ~ **v** (masses need not be introduced in ad-hoc way)

Quantum excitation of the Higgs field: The Higgs Boson

• mass of Higgs boson: free parameter in the Standard Model ($m_{H^2} = 2v^2\lambda$)

The Higgs Field and Particle Masses

Without the Higgs field:

The Higgs field explains why particles can possess mass

The more a particle directly interacts with the Higgs field, the heavier it is

Large Hadron Collider (LHC)

Proton-Proton Accelerator Circumference: 27 km

 Run 1: 7 TeV
 (2010/2011)

 8 TeV
 (2012)

 Run 2: 13 TeV
 (2015-2018)

 Run 3: 14 TeV
 (2021-2023)

LHCh

The ATLAS Detector

The ATLAS Collaboration

Z B

Argentina Armenia Australia Austria Azerbaijan Belarus Brazil Canada Chile China Colombia **Czech Republic** Denmark France Georgia Germany Greece Israel Italy Japan

Morocco Netherlands Norway Poland Portugal Romania Russia Serbia Slovakia Slovenia South Africa Spain Sweden Switzerland Taiwan Turkey UK USA

CERN JINR ~5000 members 38 Countries, 230 Institutes

Particle Physics in Germany

installation of the ATLAS calorimeter

LHC Collisions

Higgs Production Cross Sections

Challenge: separating the Higgs boson signal from background processes

Higgs Boson Decays

Year	produced Higgs bosons
2011	83 000
2012	440 000
2015	190 000
2016	1 700 000
2017	2 200 000
2018	2 900 000

The Higgs boson decays with $\tau \sim 10^{-22}$ s

• only detectable through decay products

Most sensitive channels:

•
$$H \rightarrow \gamma \gamma$$
 0.23%
• $H \rightarrow ZZ \rightarrow \ell \ell \ell \ell$ 0.028%

16

Searching for $H \rightarrow \gamma \gamma$

Run-1

Run-2

Similar results from the CMS experiment

Searching for H->ZZ->llll

Run-1

Run-2

Similar results from the CMS experiment

Reminder: Why do we care so much?

We finally can say how fundamental particles acquire their mass

The Precision Era

	produced Higgs bosons	Year
the discovery era	83 000	2011
	440 000	2012
	190 000	2015
the precision era	1 700 000	2016
	2 200 000	2017
	2 900 000	2018

With the dataset in Run-2, what do we know about the Higgs boson?

- precision mass measurements
- extensive coupling measurements
- quantum numbers (spin, CP)
- searches for rare decays
- measuring the self-coupling

Higgs Boson Mass Measurement

- Fundamental property of any particle (invariant)
- The free parameter of the SM Higgs sector
- Linked to Higgs potential and Higgs-self-coupling

Higgs Boson Mass Measurement

High Mass Resolution channels: $\gamma\gamma$ and $ZZ \rightarrow \ell\ell\ell\ell$

Maximum likelihood fit on invariant mass spectrum

Precise energy scale calibration crucial

Higgs Boson Mass Measurement

High Mass Resolution channels: $\gamma\gamma$ and $ZZ \rightarrow \ell\ell\ell\ell$

Precision of Mass Measurements

Year after discovery

Current Precision	W	Z	top	Higgs
Δm/m (%)	0.014	0.002	0.23	0.13

Higgs Boson Couplings

- Predicted for all SM particles for a given m_H
- Determine Higgs Boson Phenomenology & Experimental Signatures
- Sensitive to Beyond-Standard-Model Phenomena coupling to Higgs Sector

Does the Higgs boson couple to fermions?

ATLAS/CMS claimed observation of new particle decaying to $\gamma\gamma$, ZZ, WW (all bosons)

- particle is a boson
- particle couples to vector bosons

Does particle couple to fermions? (quarks and leptons)

$$\begin{aligned} \boldsymbol{\pounds}_{\text{bosonic}} &= (D_{\mu}\varphi)(D^{\mu}\varphi) \\ D_{\mu} &= \partial_{\mu} + ig_{W}\mathbf{T} \cdot \mathbf{W}_{\mu} + ig'YB_{\mu}/2 \end{aligned}$$

$$\mathcal{L}_{\text{fermionic}} = -g_f \left[\overline{L}\varphi R + (\overline{L}\varphi R)^{\dagger}\right]$$

How to prove fermion couplings?

Suspect Higgs-quark couplings due to indirect evidence

Direct evidence requires verifying Higgs-fermion couplings through real (non-virtual) particles

Search for ttH production

Search for $H \rightarrow bb$ and $H \rightarrow \tau \tau$ decays

ttH production

Extremely low cross-section Combine different decay channels:

- diphoton final state + $t\overline{t}$
- multi-lepton final state + \overline{tt}
- $b\overline{b}$ final state+ $t\overline{t}$

H→bb decays (BR ~ 58%)

Analysis strategy

- need excellent b-jet tagging
- target VH production to reduce background
- categorization/multi-variate discriminants used
- special techniques to improve m_{bb} resolution

Combine VH production mode with results from VBF and ttH production

ATLAS: **5.5σ** (5.4σ)

CMS: **5.6σ** (5.5σ)

28

H→ττ decays (BR ~ 6%)

Analysis strategy

- need excellent τ lepton identification
- target VBF production to reduce background
- categorization/multi-variate discriminants used
- missing energy from neutrinos taken into account in invariant mass reconstruction

ATLAS: 6.4σ (5.4 σ)

CMS: **5.9σ** (5.9σ)

Summary of Higgs Couplings

This particle seems consistent with all predicted Standard Model couplings

Main Run-2 achievement: direct observation of Higgs-fermion couplings

Higgs Boson Quantum Numbers

Clear SM prediction for Higgs boson quantum numbers: J^{CP} = 0⁺

Spin/CP quantum numbers sensitive to angular correlations of Higgs boson production and decay products

Can use hypothesis testing to test SM prediction against alternatives

Determining Quantum Numbers: Angular Correlations

Spin/CP Results

All alternative hypotheses excluded to more than 99.9% CL

Higgs boson very SM-like: small non-SM admixture not yet excluded

Searches for Rare Higgs Boson Production & Decays

Searches for rare SM decays

- H→µµ (probe 2nd generation lepton coupling)
- H→Zγ (probe loop decay)

Searching for H→µµ

Best chance to establish Higgs couplings to 2nd generation fermions

The channel to watch in **Run-3**

CMS: $BR_{H \to \mu\mu} < 2.9 \text{ x } BR_{SM}$ (95% CL)

The Higgs Self-Coupling & Higgs-Pair Production

The "holy grail" of Higgs physics

Direct measurement of the Higgs potential

 $\mathbf{V}(\boldsymbol{\Phi}) = \boldsymbol{\mu}^2 \, \boldsymbol{\Phi}^* \boldsymbol{\Phi} + \boldsymbol{\lambda} \, | \, \boldsymbol{\Phi}^* \boldsymbol{\Phi} \, |^2$

Searches for Higgs-Pair Production

aMC@NLC

MadGraph5_

4

2

3

Higgs-Pair Production Searches

CMS: $-11.8 \text{ x} \lambda_{\text{SM}} < \lambda < 18.8 \text{ x} \lambda_{\text{SM}}$ (95% CL)

Searches are statistics limited: more data will constrain λ even more!

The Precision Higgs Era has clearly started....

In this talk we saw that with Run-2:

- Higgs mass measured to unprecedented precision
- Higgs couplings to the fermion sector confirmed
- Exclusion of alternative spin and CP hypotheses for the Higgs boson
- Approaching sensitivity to Higgs couplings with 2nd generation fermions
- Excluding large values of the Higgs self-coupling

In addition:

- differential cross-sections measured
- exclusions of large anomalous couplings
- increasing sensitivity to CP-admixture scenarios
- inference of limits on Higgs width from off-shell measurements

We have learned much about the "personality" of the Higgs boson at the end of Run-2

Run-3 and the HL-LHC

...but the precision era will continue

increase in data by ~2 orders of magnitude to 3000 fb⁻¹

increase in energy to 14 TeV

Significant upgrades to accelerator complex and LHC detectors

Sensitivity Estimates

 κ_{λ}

Summary & Outlook

h Standard Model Prediction Higgs Boson H⁺ H⁺ H⁺ H⁺ H⁺

We have come to know much more about the Higgs boson in the last 7 years

Its personality thus far is very "standard"

But the teenage years are still to come ;)

Maybe it has siblings we don't know about ;)

Thanks for your attention!!

Fundamental Forces/Interactions

Four fundamental forces/interactions that we know about

At the quantum mechanical level, forces transmitted by particles (force carriers)

 all interactions we know of can be described by these forces (and particles of the Standard Model)

Symmetry Breaking

Examples of symmetry breaking

The vacuum state hides the symmetry of the system

Higgs Mass: ATLAS results & systematics

The Higgs Mass and the Fate of the Universe

Erzeugung von Higgs-Bosonen am LHC

ATLAS H→bb Results (13 TeV)

	ATLAS — Total	H→bb 4.7	√s= 7 TeV, 8 ⁻¹ fb ⁻¹ , 20.3 fb ⁻¹ ,	TeV, and 13 TeV and 24.5-79.8 fb ⁻¹			
VBF+ggF		− _ 1	Tot. .68 ^{+1.16}	(Stat., Syst.) (+1.01, +0.57 (-1.00, -0.51)	Channel	Signifi	icance
			-1.12			Exp.	Obs.
ttH	₽-+++4	1	.00 ^{+0.56} _{-0.54}	$\left(\begin{smallmatrix}+0.28 & +0.48\\-0.27\end{smallmatrix}\right)$	VBF+ggF	0.9	1.5
νн		0	00 +0.22	(+0.14 +0.17)	$t\bar{t}H$	1.9	1.9
	U	.90 _0.21	(_0.14 , _0.16)	VH	5.1	4.9	
Comb.	нөн	1	.01 ^{+0.20} _0.20	$\left(\begin{smallmatrix}+0.12&+0.16\\-0.12&,-0.15\end{smallmatrix}\right)$	$H \to b\bar{b}$ combination	5.5	5.4
L C	1 2	23	4 5	6_7 μ_ H→bb		PLB 786	(2018) 59

CMS Results: 5.6 σ observed, 5.5 σ expected

ATLAS Η-->ττ

lep-lep

lep-had

had-had

Clear excess of data above background prediction

Excess consistent with SM Higgs boson prediction

ATLAS Coupling Combination

ATLAS Preliminary $\sqrt{s} = 13$ TeV, 24.5 - 79.8 fb ⁻¹ m = 125.09 GeV ly $l < 2.5$	Stat.		Syst.	SM
$p_{SM} = 71\%$		Total	Stat.	Syst.
ggF γγ 📥	0.96	± 0.14 (±0.11,	+0.09 -0.08)
ggF ZZ 🙀	1.04	+ 0.16 - 0.15 (±0.14,	± 0.06)
ggF WW 📥	1.08	± 0.19 (±0.11,	± 0.15)
ggF ττ μ	0.96	+ 0.59 - 0.52 (+0.37 -0.36,	+0.46 -0.38)
ggF comb.	1.04	± 0.09 (±0.07,	+ 0.07 - 0.06)
VBF γγ μ	1.39	+ 0.40 - 0.35 (+0.31 -0.30,	+0.26 -0.19)
	2.68	+ 0.98 - 0.83 (+0.94 -0.81,	+ 0.27 - 0.20)
	0.59	+ 0.36 - 0.35 (+0.29 -0.27,	± 0.21)
VBF ττ μ	1.16	+ 0.58 - 0.53 (+0.42 -0.40,	+0.40 -0.35)
	3.01	+ 1.67 - 1.61 (+ 1.63 - 1.57,	+ 0.39 - 0.36)
VBF comb.	1.21	+ 0.24 - 0.22 (+0.18 -0.17,	+0.16 -0.13)
νΗ γγ ι	1.09	+ 0.58 - 0.54 (+0.53 -0.49,	+0.25 -0.22)
	0.68	+ 1.20 - 0.78 (+1.18 -0.77,	+0.18 -0.11)
VH bb	1.19	+ 0.27 - 0.25 (+ 0.18 - 0.17,	+ 0.20 - 0.18)
VH comb.	1.15	+ 0.24 - 0.22 (±0.16,	+0.17 -0.16)
ttH+tH γγ	1.10	+ 0.41 - 0.35 (+0.36 -0.33,	+0.19 -0.14)
	1.50	+ 0.59 - 0.57 (+0.43 -0.42,	+0.41 -0.38)
	1.38	+ 1.13 - 0.96 (+0.84 -0.76,	+0.75 -0.59)
ttH+tH bb	0.79	+ 0.60 - 0.59 (±0.29,	± 0.52)
ttH+tH comb.	1.21	+ 0.26 - 0.24 (±0.17,	+0.20 -0.18)
-2 0 2 4		6		8

Parameter normalized to SM value

Higgs-Pair Production Searches

ATLAS: $-5.0 \ge \lambda_{SM} < \lambda < 12.0 \ge \lambda_{SM}$ (95% CL) CMS: $-11.8 \ge \lambda_{SM} < \lambda < 18.8 \ge \lambda_{SM}$ (95% CL)